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Introduction

Probability theory is applied math.

Distributions objectively result from model inputs and various
rules/laws (i.e. math)

Statistics is the study of how to use observed data to infer the underlying
model that produced it

Primary challenge: the same dataset could be produced by many
different models

So we want approaches that can identify the most “appealing” model,
given the data.

We’re outside of pure math; we have some criteria/goals we strive for

More like economics: optimizing something

A formalization of this is called “decision theory.”



Loss functions

Let µ be some unknown object.
We need to decide what we think it is. Our decision will be denoted µ̂.
A loss function, L(µ, µ̂) tells us how much disutility we suffer from that
choice.
Two common example:

1 L(µ, µ̂) = (µ− µ̂)2

2 L(µ, µ̂) = |µ− µ̂|
Of course, we can never actually evaluate our loss because we don’t know
µ

But this framework can allow us to properties of statistical
approaches and their desirability



Risk functions

Suppose that our decision will be a function of data, µ̂(X ), where
X = {x1, x2, ..., xn} is a sample drawn at random from some common
distribution.
Because X is a RV, µ̂(X ) is a RV. Because it is an attempt to “estimate”
µ, we call µ̂(X ) an estimator.
The risk function of an estimator is:

R(µ, µ̂(X )) = E [L(µ, µ̂(X ))] (1)

Analogous to the previous slide, two common examples are:
1 R(µ, µ̂) = E [(µ− µ̂(X ))2]

Known as “mean squared error” (MSE)

2 R(µ, µ̂) = E [|µ− µ̂(X )|]
We’ll call this “mean absolute error” (MAE)



Prediction, MSE (population)

Suppose we will make a draw from some distribution FX . Find the optimal
prediction using the MSE criterion:

µ̂ = argminaE [(X − a)2] (2)

FOC:
−2 · E [X − µ̂] = 0 ⇒ µ̂ = E [X ] (3)

A new interpretation of the mean:

MSE-minimizing prediction
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Prediction, MSE (sample)

Suppose you have a sample of data, {x1, x2, ..., xn}. We will draw one
observation from the sample. Find the optimal prediction using the MSE
criterion:

µ̂(X ) = argmina
1

n
·

n∑
i=1

(xi − a)2 (4)

FOC:

−2

n
·

n∑
i=1

(xi − a) = 0 ⇒ µ̂ =
1

n
·

n∑
i=1

xi (5)

The sample mean, 1
n ·

n∑
i=1

xi , is the best prediction of a draw from a

sample, using the MSE criterion.



Prediction, MAE

Suppose you have a sample of data, {x1, x2, ..., xn}. We will draw one
observation from the sample. Find the optimal prediction using the MAE
criterion:

µ̂(X ) = argmina
1

n
·

n∑
i=1

|xi − a| (6)

µ̂(X ) = {a : P(x ≥ a) = 0.5} = Med(X ) (7)

The sample median is the best prediction of a draw from a sample, using
the MAE criterion.
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1

n
·
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Mean vs. median

Mean minimizes MSE; median minimizes MAE

Kind of cool, but kind of frustrating
In some cases, you may really be able to say that you want to harshly
penalize large errors (or not)

If so, this analysis tells you which estimator to use

But oftentimes you may not have a strong feeling about this

To help tailor a statistical approach, we can look more closely at how they
behave. We’ll focus on two features:

1 Sensitivity

2 Robustness



Sensitivity

Consider how the estimators respond to a change in the data:

dX̄

dxi
=

1

n
(8)

dMed(X )

dxi
=

{
1 if xi = Med(X )

0 if xi ̸= Med(X )
(9)

This seems to be a point in favor of the mean

X̄ depends on every data point in a smooth way

In contrast, changing a data point has no impact on the median,
until/unless it becomes the median, at which point it has an
enormous impact

Because any change to the data impacts the mean, we can say X̄ is
sensitive, where is Med(X ) is not.



Robustness

We may like that the mean responds to every data point.
But we also may want to make sure that 1 data point cannot have an
outsized effect on the estimator.
Define an estimator’s breakdown value, s(µ̂(X )), to be the largest share
of the sample that can all simultaneously go to ∞ while µ̂(X ) remains
finite.

s(X̄ ) = 0

s(Med(X )) = 0.5

The median is more robust to outliers, which can be comforting.



Huber Estimator

Huber (1964) presented a compromise loss function:

L(xi , µ̂(X )) =

{
(xi − µ̂(X ))2 if |xi − µ̂(X )| ≤ k

2 · k · |xi − µ̂(X )| − k2 if |xi − µ̂(X )| > k
(10)

|xi | ≤ k : acts like MSE, (xi − a)2

|xi | > k : acts like MAE, |xi − a|
The function is smooth, even at xi = k and xi = −k :

2 · k · |k | − k2 = k2 and 2 · k · | − k | − k2 = k2

Has MSE’s sensitivity to data points when |xi | is not too large...but also
MAE’s robustness to outliers (|xi | large).

Small k makes the loss function more like MAE

Large k makes the loss function more like MSE

Despite the cleverness of the Huber estimator, it is not a workhorse
approach, at least in part due to more abstract interpretation



Tractability

In practice, MSE is a lot easier to work with than MAE
dMSE
da = 0 exists

We found the solution with our standard optimization approach

dMAE
da is never equal to 0

Recall, there was no FOC!

When summarizing one variable, calculating a median is not too much
harder than a mean

Though if the dataset is large, sorting is a pain, even for a computer

But minimizing MSE in a multivariate context (with a least squares
regression) is much easier than minimizing MAE
So in practice, we spend much more time thinking about means than
medians

But keep in mind that this implicitly assumes a particular loss
function (MSE)



Trimming/Winsorizing

While we privilege the mean, the previous discussion highlighted a concern

Lack of robustness to outliers

In practice, it is common to deal with outliers by either:

1 Trimming: Dropping observations with values that are greater than
the 99th percentile or below the 1st percentile; or

2 Winsorizing: Replacing all values that were above the 99th
percentile equal to the 99th percentile, and replacing all values that
were below the 1st percentile equal to the 1st percentile

This should not be done blindly. Consider why are there outliers...

If you suspect a data error, trimming makes a lot of sense

If you think the data is true, winsorizing makes more sense

But in some cases, those outliers may be very important, so you don’t
want to lose/alter them

In other cases, you may want to find a general pattern, so winsorizing
will allow you to make sure outliers don’t obscure that



Bias-Variance Tradeoff

MSE(µ, µ̂) ≡ E [(µ− µ̂(X ))2] =
(
µ− E [µ̂(X )]

)2︸ ︷︷ ︸
Bias2

+E
[
(µ̂− E [µ̂(X )])2

]︸ ︷︷ ︸
Variance

(11)
An estimator will have larger squared errors on average (i.e. MSE) if:

1 Bias: it is systematically too high or too low

2 Variance: it is volatile



BVT: Interpretation 1

Suppose we are trying to estimate the mean of a distribution, µX .
Consider taking a random sample, {x1, ..., xn}, and calculating the sample
average, X̄ .

E [X̄ ] = E
[1
n

∑
xn
]
=

1

n
· n · µ = µ (12)

In words, the sample mean is unbiased, or:

E
[
E [X̄ ]− µ

]
= 0 (13)

We already know that X̄ minimizes MSE. Therefore:

Because MSE = Bias2 + Var...

...and Bias(X̄ ) = 0...

...X̄ must have the lowest variance of all unbiased estimators

X̄ is efficient, or it is the best unbiased estimator (BUE).



BVT: Interpretation 2

The Bias-Variance Tradeoff has a more provocative – and useful! –
interpretation:

Introducing bias may be beneficial if it sufficiently reduces
variance



BVT example

Trying to estimate µ with data from 2 sources:

1 xi ∼ N(µ, 5) for i = 1, ..., 5

2 xi ∼ N(µ− 0.5, 5) for i = 6, ..., 55

Consider 2 estimators:
1 Unbiased: 1

5 ·
∑5

i=1 xi
MSE =

2 Biased: 1
55 ·

∑55
i=1 xi

MSE =



BVT example

Trying to estimate µ with data from 2 sources:

1 xi ∼ N(µ, 5) for i = 1, ..., 5

2 xi ∼ N(µ− 0.5, 5) for i = 6, ..., 55

Consider 2 estimators:
1 Unbiased: 1

5 ·
∑5

i=1 xi
MSE = 4.98

2 Biased: 1
55 ·

∑55
i=1 xi

MSE = 0.66

Estimator 2 does introduce some bias because it’s using data that did not
come from the “target” population...
...but it performs much better because it is much more stable! The bias
was worth the reduction in variance.
If you wanted to predict the temperature on 11/30/2024, would you look
at past data only from 11/30, or perhaps all days in late November?



BVT example, visualized



Contrast with axiomatic approach

Sometimes, statistical techniques are motivated with an “axiomatic”
approach

Let’s use the efficient estimator, i.e. lowest-variance unbiased
estimator, i.e. BUE

This is often how regression is motivated. Gauss-Markov Theorem
says OLS is BLUE.

(IMO), decision theory gives a much more compelling way to think about
statistical analysis.

Why restrict yourself to only unbiased estimators?

Doing so ignores that you can likely get more precise estimates by
admitting some bias

That tradeoff should be taken seriously

When we get to regression later in the semester, I will motivate it as the
result of decision theory, not from axioms as is often done.



Hypothesis Testing

A hypothesis test is a familiar use of decision theory.
Consider some parameter θ that we are interested in. If θ ∈ Θ and
Θ0 ⊂ Θ, then a null hypothesis is the following statement:

H0 : θ ∈ Θ0. (14)

The alternative hypothesis is:

HA : θ ∈ Θc
0. (15)

A hypothesis test is a procedure for using data to decide whether to
reject H0 in favor of HA.



Familiar approach

Suppose you have data drawn from a Normal distribution with mean µ.
You want to test the following hypotheses:

H0 : µ = µ0; HA : µ ̸= µ0 (16)

I.e. “Θ0 = µ0,” “Θc
0 = the rest of R1”

Further suppose you have data randomly sample from that distribution,
{x1, ..., xn}, with sample mean x̄ .
Define:

z ≡ x̄ − µ0

sd(xi )/
√
n

(17)

Note that if H0 is true, z ∼ N(0, 1):

E [z ] =
√
n

sd(xi )
· (E [x̄ ]− µ0) = 0

var(z) = var(x̄)
var(xi )/n

= var(
∑

xi )/n
2

var(xi )/n
= n·var(xi )/n2

var(xi )/n
= 1



Familiar approach (2)

H0 : µ = µ0; HA : µ ̸= µ0

z ≡ x̄ − µ0

sd(xi )/
√
n
∼ N(0, 1)

Because z ∼ N(0, 1), P(|z | ≥ 1.96) = 0.05.

Equivalently, P(|x̄ − µ0| ≥ 1.96 · sd(xi )/
√
n) = 0.05

Therefore, if |x̄ − µ0| ≥ 1.96 · sd(xi )/
√
n, either:

1 H0 is wrong; or

2 Something very unusual just happened (i.e. less than 5% likelihood)

By definition, “very unusual” things are unlikely, so H0 seems unlikely to
be true

We reject H0 “at the 5% level.”

If we had found |x̄ − µ0| < 1.96 · sd(xi )/
√
n, we would not reject H0

at the 5% level



Likelihood Ratio Test

Suppose xi ∼ f (x |θ), with unknown parameter θ, and we draw a random
sample from the population to form a dataset, {x1, ..., xn}.
For any hypothesized value of θ, denoted by θ̂, the dataset’s likelihood
functions is given by:

L(x|θ̂) =
n∏

i=1

f (xi |θ̂) (18)

Given hypotheses H0 : θ ∈ Θ0 and HA : θ ∈ Θc
0, the test statistic of the

LRT is:

λ(x) =
supθ̂∈Θ0

L(x|θ̂)
supθ̂∈ΘL(x|θ̂)

(19)



Likelihood Ratio Test (2)

Given hypotheses H0 : θ ∈ Θ0 and HA : θ ∈ Θc
0, the test statistic of the

LRT is:

λ(x) =
supθ̂∈Θ0

L(x|θ̂)
supθ̂∈ΘL(x|θ̂)

(20)

The numerator is the best you can do if you restrict yourself to only
the hypothesized region of Θ, Θ0

The denominator is the best you can do when you have access to the
entire parameter space

Note that λ(x) ∈ [0, 1]. A likelihood ratio test involves picking some
critical level, c , such that:

1 H0 is rejected if λ(x) ≤ c

2 H0 is not rejected if λ(x) > c



LRT for Mean of a Normal RV

Suppose you have data drawn from a Normal distribution with mean µ.
You want to test the following hypotheses:

H0 : µ = µ0; HA : µ ̸= µ0

It can be shown that L(x, θ̂) is maximized at θ = x̄ . Therefore:

λ(x) =
L(x|µ0)

L(x|x̄)

=
exp
(
−
∑

(xi − µ0)
2/2
)

exp
(
−
∑

(xi − x̄)2/2
)

= exp
((∑

(xi − x̄)2 −
∑

(xi − µ0)
2
)
/2
)

= exp
(
− n · (x̄ − µ0)

2/2
)

(21)



LRT for Mean of a Normal RV (2)

H0 : µ = µ0; HA : µ ̸= µ0

λ(x) = exp
(
− n · (x̄ − µ0)

2/2
)

Rejecting when λ(x) ≤ c means we will reject when:

|x̄ − µ0| ≥
√

−2 · ln(c)/n ≡ z∗ (22)

Since c ∈ (0, 1), z∗ ∈ (0,∞), so the LRT amounts to saying:

If the sample mean is close enough to our hypothesized value (above
or below), we will not reject...

If the sample mean is far enough to our hypothesized value (above or
below), we will reject...

So the familiar test of comparing |x̄ − µ0| to 1.96 · sd(xi )/
√
n is a specific

LRT.

z∗ = 1.96 · sd(xi )/
√
n



Type I and Type II Errors

Accept H0 Reject H0

H0 is true ✓ Type I Error

HA is true Type II Error ✓

There is a tradeoff between errors of Types I and II.
A permissive test could set c low, e.g. z∗ high

High threshold for rejection

Type I relatively rare

Type II relatively common

A strict test could set c high, e.g. z∗ low

Low threshold for rejection

Type I relatively common

Type II relatively rare
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Power and Size

To operationalize these errors, we define the following:

A test’s size is the highest probability of a Type I Error among all
θ ∈ Θ0

If Θ0 = θo is a single value as in our prior example, then the size is
equal to P(Reject H0|θ = θ0)

In your homework, you’ll consider a test in which Θ0 is a set

A test’s power function, β(θ), shows the probability of a Type I
Error for all values of θ ∈ Θc

0



Size and power function, example

Hypotheses:
H0 : µ = 1; HA : µ ̸= 1

Define z ≡ x̄−1
σxi

/
√
n
. Note that if µ = 1, z ∼ N(0, 1).

Consider two hypothesis testing approaches:
1 Reject if |z | ≥ z∗ = 1.96

Size: P(z ≤ −1.96|µ− 1 = 0) + P(z ≥ 1.96|µ− 1 = 0) = 5%

2 Reject if |z | ≥ z∗ = 2.58

Size: P(z ≤ −2.58|µ− 1 = 0) + P(z ≥ 2.58|µ− 1 = 0) = 1%

Note that the size of the test does not depend on the details of data!

σxi and n are not part of the calculation; only z∗ matters

Such a test is designed so that if H0 is true, we have a fixed
probability (1%, 5%, etc) of incorrectly rejecting it

Power functions are more complicated...



Size and power function, example (2)

β(µ) = P

(∣∣∣ x̄ − 1

σxi/
√
n

∣∣∣ < z∗ | E [xi ] = µ

)

= P

(∣∣∣ x̄ − µ

σxi/
√
n
+

µ− 1

σxi/
√
n

∣∣∣ < z∗ | E [xi ] = µ

)

= P

(∣∣∣z̃ + µ− 1

σxi/
√
n

∣∣∣ < z∗ | E [xi ] = µ

)

= P

(
z̃ +

µ− 1

σxi/
√
n
< z∗ AND z̃ +

µ− 1

σxi/
√
n
> −z∗ | E [xi ] = µ

)
(23)

So the probability of a Type II Error is below, where z̃ ∼ N(0, 1):

P

(
z̃ ∈

(
− z∗ − µ− 1

σxi/
√
n
, z∗ − µ− 1

σxi/
√
n

)
| E [xi ] = µ

)
(24)



Size and power function example, graph



Size and power function, intuition

A tradeoff exists been size and power

You can avoid Type II Errors by setting a high rejection threshold
(low size)...

...but then you open yourself up to a high probability of Type I Errors

You could set a low rejection threshold (high size), which will lead to
more Type II Errors...

...but the benefit will be to reduce Type I Errors

Increasing sample size improves the tradeoff:

Can lower one type of error without increasing the other one (or lower
both)



Power calculation, setup

These concepts can guide data collection/experimental design.
Suppose you want to evaluate the following hypothesis:

H0 : θ ≡ µ1 − µ2 = 0; HA : θ ≡ µ1 − µ2 ̸= 0 (25)

µ1 is the population average in group 1

µ2 is the population average in group 2

Perhaps you are comparing earnings between people who receive job
training and those who do not

You will collect data from random samples of the two groups and estimate:

θ̂ = µ̂1 − µ̂2 = x̄1 − x̄2 =
1

n1

∑
Group 1

xi −
1

n2

∑
Group 2

xi (26)

If data collection is costly, you need to think about how many observations
to get



Power calculation, setup (2)

Perhaps, like most economists, you want your size to be 5%

I.e., if θ = 0, you want to incorrectly reject H0 only 5% of the time

Let’s also assume σxi = 30

Maybe you get this from a small initial sample, or from another
dataset on earnings

Finally, assume that based on you economic setting, you think it’s very
important to reject H0 if |θ| > 10.

I.e. if θ = 1 and you incorrectly accept that θ = 0, maybe that’s not
a big deal...

But if θ = 10 would lead an incorrect conclusion that θ = 0 to be
“bad”



Power calculation

Since size is 5%, will reject if |z | > 1.96. Therefore:

P(Type I Error|θ = 10) = P

(∣∣∣ θ̂ − 0

sd(θ̂)

∣∣∣ < 1.96|θ = 10

)

= P

(∣∣∣ θ̂ − 10

sd(θ̂)
+

10

sd(θ̂)

∣∣∣ < 1.96|θ = 10

)

= P

(∣∣∣z̃ + 10

sd(θ̂)

∣∣∣ < 1.96

)
,

(27)

where z̃ ∼ N(0, 1). Further note:

sd(θ̂) =

√
var(θ̂)

=
√

var(x̄1) + var(x̄2)

=
√

σ2
xi
/n1 + σ2

xi
/n2

(28)



Power calculation (2)

So:

P(Type I Error|θ = 10) = P

(∣∣∣z̃ + 10

sd(θ̂)

∣∣∣ < 1.96

)

= P

(
z̃ < 1.96− 10√

302/n1 + 302/n2

)

− P

(
z̃ < −1.96− 10√

302/n1 + 302/n2

) (29)

If:

n1 = n2 = 50, this is 61.5%

n1 = n2 = 100, this is 34.6%

If you deem that a 10% probability of this error is acceptable, need
n1 = n2 >= 190



Power calculation, visualize



Power calculation, intuition

Need more data when:

1 You want to keep the probability of Type I Error low (1% vs. 10%)

2 When you want to keep the probability of a Type II error low (1% vs.
5%)

3 You want to rule out values closer to the null hypothesis (10 vs. 20)

This relatively simple application of statistics tells you how much data you
need to gather!



p-values

A hypothesis test gives a binary result.

E.g. “If |z | > 1.96 I will reject H0; otherwise I will not.”

A p-value of a null hypothesis is the lowest tolerated size for which the
test would be rejected.

Recall, size is P(Reject H0| H0 true).

So if size = 5%, you are willing to reject H0 5% of the time when it is
true

If you observe z = 3.525 > 1.96, you would reject for size = 5%

But you would also reject for size = 1%, since z = 3.525 > 2.58

Taking this to its limit, P(|z | > 3.525) = 0.04%

Intuitive interpretation: “If H0 is true, the data I observed (z = 3.525)
is so extreme that it only had a 0.04% chance of occurring. Therefore,
if my tolerance for a Type II Error is greater than 0.04%, I will reject
H0.”

So the p-value = 0.04%.



p-values, visualized



p-values, visualized



p-values, visualized



p-values, visualized



p-values, visualized



Set Estimation

So far we have focused on point estimation

1 Produce a single “best guess” of a parameter

2 Test whether that parameter is equal to a certain hypothesized value

But perhaps we need not be constrained to giving a single “best guess”

Maybe, a set of “reasonable guesses” would suffice

E.g. “I think µ is between 1.5 and 2.3,” rather than “I think µ is 1.9.”

The main manifestation of this in applied econometrics is confidence
intervals



Inverting a Hypothesis Test

Recall our standard test of H0 : µ = µ0

Reject H0 if
∣∣∣ x̄ − µ0

σxi/
√
n

∣∣∣ > z∗

While this can be used to test a specific µ0, we can also rearrange to find
all values of µ0 such that the test will not lead to rejection:

Do not reject H0 if
∣∣∣ x̄ − µ0

σxi/
√
n

∣∣∣ < z∗

if
x̄ − µ0

σxi/
√
n
< z∗ AND

x̄ − µ0

σxi/
√
n
> −z∗

if µ0 > x̄ − z∗ · σxi√
n
AND µ0 < x̄ + z∗ · σxi√

n

if µ0 ∈
[
x̄ − z∗ · σxi√

n
, x̄ + z∗ · σxi√

n

]



Confidence Intervals

CI(x1, ..., xn) ≡
[
x̄ − z∗ · σxi√

n
, x̄ + z∗ · σxi√

n

]
(30)

By choosing z∗ to correspond to a hypothesis test of size α, the set CI is
called a (1-α) confidence interval

E.g. by setting z∗ = 1.96, we get a 95% confidence interval

Note that CI(x) is a RV, since it is a function of randomly sampled data.
Furthermore, µ ∈ CI (x) with probability 1− α.

Suppose µ = µ̃

Drawing a x̄ so far away from µ̃ that µ̃ ∈ CI(x)c ...

...is the same event as rejecting H0 : µ = µ̃, even though it’s true.

The latter occurs with probability α, so the former must as well

So P(µ̃ ∈ CI(x)) = 1− α



Confidence interval, example

x̄ = 25, σxi = 15
95% CI:

1 n = 10: [15.7, 34.3]

2 n = 30: [19.6, 30.4]



Alternative confidence sets

x̄ = 25, σxi = 15, n = 10

P(µ ∈ [15.7, 34.3]) = 95%.

Note also:
1 P(µ ∈ [−∞, 24.7] U [25.3,∞]) = 95%

2 P(µ ∈ [−∞, 32.8]) = 95%

3 P(µ ∈ [17.2,∞]) = 95%

What do you think of these alternatives?



Alternative confidence sets

x̄ = 25, σxi = 15, n = 10

P(µ ∈ [15.7, 34.3]) = 95%.

Note also:
1 P(µ ∈ [−∞, 24.7] U [25.3,∞]) = 95%

Seems awful. We’ve ruled out only a tiny interval, [24.7,25.3], and it’s
the interval that contains the point estimate, 25!

2 P(µ ∈ [−∞, 32.8]) = 95%

3 P(µ ∈ [17.2,∞]) = 95%

What do you think of these alternatives?



Alternative confidence sets

x̄ = 25, σxi = 15, n = 10

P(µ ∈ [15.7, 34.3]) = 95%.

Note also:
1 P(µ ∈ [−∞, 24.7] U [25.3,∞]) = 95%

Seems awful. We’ve ruled out only a tiny interval, [24.7,25.3], and it’s
the interval that contains the point estimate, 25!

2 P(µ ∈ [−∞, 32.8]) = 95%

Much wider than the original, but if you really don’t want to miss too
high, this is better.

3 P(µ ∈ [17.2,∞]) = 95%

What do you think of these alternatives?



Alternative confidence sets

x̄ = 25, σxi = 15, n = 10

P(µ ∈ [15.7, 34.3]) = 95%.

Note also:
1 P(µ ∈ [−∞, 24.7] U [25.3,∞]) = 95%

Seems awful. We’ve ruled out only a tiny interval, [24.7,25.3], and it’s
the interval that contains the point estimate, 25!

2 P(µ ∈ [−∞, 32.8]) = 95%

Much wider than the original, but if you really don’t want to miss too
high, this is better.

3 P(µ ∈ [17.2,∞]) = 95%

Much wider than the original, but if you really don’t want to miss too
low, this is better.

What do you think of these alternatives?

The original is the shortest, which seems desirable. But options 2 and
3 are the inversions of the tests of H0 : µ < µ0 and H0 : µ > µ0,
respectively, so could be defensible depending on your goals.


