Statistical Analysis and Decision Theory

Econ 6105, Fall 2024

Prof. Josh Abel

(CB chapters 7-9, 10.2)



Introduction

Probability theory is applied math.

o Distributions objectively result from model inputs and various
rules/laws (i.e. math)

Statistics is the study of how to use observed data to infer the underlying
model that produced it

@ Primary challenge: the same dataset could be produced by many
different models

So we want approaches that can identify the most “appealing” model,
given the data.

@ We're outside of pure math; we have some criteria/goals we strive for

@ More like economics: optimizing something

A formalization of this is called “decision theory.”



Loss functions

Let v be some unknown object.

We need to decide what we think it is. Our decision will be denoted /.
A loss function, L(y, f1) tells us how much disutility we suffer from that
choice.

Two common example:

O L(u,p) = (n—p)?
Q@ L(pp)=|p—Apl
Of course, we can never actually evaluate our loss because we don't know

7

@ But this framework can allow us to properties of statistical
approaches and their desirability



Suppose that our decision will be a function of data, fi(X), where

X = {x1,x2, ..., xn} is a sample drawn at random from some common
distribution.

Because X is a RV, fi(X) is a RV. Because it is an attempt to “estimate”
w, we call fi(X) an estimator.

The risk function of an estimator is:

R(u, (X)) = E[L(p, i(X))] (1)
Analogous to the previous slide, two common examples are:
Q@ R(u, i) = E[(n — A(X))?]

o Known as "mean squared error” (MSE)

Q@ R(p, i) = Ellp — p(X)]
o We'll call this “mean absolute error” (MAE)



Prediction, MSE (population)

Suppose we will make a draw from some distribution Fx. Find the optimal
prediction using the MSE criterion:

1 = argmin, E[(X — a)’] (2)



Prediction, MSE (population)

Suppose we will make a draw from some distribution Fx. Find the optimal
prediction using the MSE criterion:

i = argmin E[(X — 2)?] (2)
FOC:

—2-E[X—p]=0= = E[X] (3)
A new interpretation of the mean:

@ MSE-minimizing prediction



Prediction, MSE (sample)

Suppose you have a sample of data, {x1,x2, ..., xn}. We will draw one

observation from the sample. Find the optimal prediction using the MSE
criterion:

n

N 1
f(X) = argmin, - ) (x; — a)? (4)
i=1
FOC: . .
2 L1 '
_n.;(x,-—a)_oiu—n '_lx, (5)

The sample mean, % . ZX,', is the best prediction of a draw from a

i=1
sample, using the MSE criterion.



Prediction, MAE

Suppose you have a sample of data, {x1, x2, ..., xo }. We will draw one

observation from the sample. Find the optimal prediction using the MAE
criterion:

n

. 1
A(X) = argmin, - > |x; 3| (6)

i=1



Prediction, MAE

Suppose you have a sample of data, {x1, x2, ..., xo }. We will draw one
observation from the sample. Find the optimal prediction using the MAE
criterion:

AX) = argmin, - >l (6)
i=1
AX)={a: P(x > a) = 0.5} = Med(X) (7)

The sample median is the best prediction of a draw from a sample, using
the MAE criterion.



Mean vs. median

Mean minimizes MSE; median minimizes MAE
@ Kind of cool, but kind of frustrating

o In some cases, you may really be able to say that you want to harshly
penalize large errors (or not)

o If so, this analysis tells you which estimator to use
o But oftentimes you may not have a strong feeling about this

To help tailor a statistical approach, we can look more closely at how they
behave. We'll focus on two features:

@ Sensitivity
@ Robustness



Sensitivity

Consider how the estimators respond to a change in the data:

dX 1
dx; o (8)
dMed(X) [ 1if x; = Med(X) ©)
dxi ) 0if x;i £ Med(X)

This seems to be a point in favor of the mean
@ X depends on every data point in a smooth way
@ In contrast, changing a data point has no impact on the median,

until/unless it becomes the median, at which point it has an
enormous impact

Because any change to the data impacts the mean, we can say X is
sensitive, where is Med(X) is not.



We may like that the mean responds to every data point.
But we also may want to make sure that 1 data point cannot have an
outsized effect on the estimator.
Define an estimator’'s breakdown value, s(/i(X)), to be the largest share
of the sample that can all simultaneously go to co while ji(X) remains
finite.

e s(X)=0

o s(Med(X))=0.5

The median is more robust to outliers, which can be comforting.



Huber Estimator

Huber (1964) presented a compromise loss function:

(x5 — A(X))? i |x — A(X)| < k

R . X (10)
2 k-|xi— (X)) — k2 if |xi — p(X)] > k

L(xi, (X)) = {
o |x;| < k: acts like MSE, (x; — a)?
e |x;| > k: acts like MAE, |x; — a|
@ The function is smooth, even at x; = k and x; = —k:
02 k- |kl—K=kKand2 k-|— k| — k2 = K2
Has MSE's sensitivity to data points when |x;| is not too large...but also
MAE's robustness to outliers (|x;| large).

@ Small k makes the loss function more like MAE

@ Large k makes the loss function more like MSE

Despite the cleverness of the Huber estimator, it is not a workhorse
approach, at least in part due to more abstract interpretation



Tractability

In practice, MSE is a lot easier to work with than MAE

dMSE __ .
o == 0 exists

e We found the solution with our standard optimization approach

dMAE -
e “7= is never equal to 0

o Recall, there was no FOC!

When summarizing one variable, calculating a median is not too much
harder than a mean

@ Though if the dataset is large, sorting is a pain, even for a computer
But minimizing MSE in a multivariate context (with a least squares
regression) is much easier than minimizing MAE
So in practice, we spend much more time thinking about means than
medians

@ But keep in mind that this implicitly assumes a particular loss
function (MSE)



Trimming/Winsorizing

While we privilege the mean, the previous discussion highlighted a concern
@ Lack of robustness to outliers
In practice, it is common to deal with outliers by either:

@ Trimming: Dropping observations with values that are greater than
the 99th percentile or below the 1st percentile; or

@ Winsorizing: Replacing all values that were above the 99th
percentile equal to the 99th percentile, and replacing all values that
were below the 1st percentile equal to the 1st percentile

This should not be done blindly. Consider why are there outliers...
o If you suspect a data error, trimming makes a lot of sense

@ If you think the data is true, winsorizing makes more sense

o But in some cases, those outliers may be very important, so you don't
want to lose/alter them

o In other cases, you may want to find a general pattern, so winsorizing
will allow you to make sure outliers don't obscure that



Bias-Variance Tradeoff

MSE(u, 1) = E[(n — 2(X))?] = (n— E[a(X)])° + E[(2 — E[(X)])?]

Bias? Variance

(11)

An estimator will have larger squared errors on average (i.e. MSE) if:
@ Bias: it is systematically too high or too low

@ Variance: it is volatile



BVT: Interpretation 1

Suppose we are trying to estimate the mean of a distribution, px.
Consider taking a random sample, {xi, ..., xp}, and calculating the sample
average, X.

E[)_(]:E[%an]:%-n-,u:,u (12)

In words, the sample mean is unbiased, or:
E[E[X]—pu] =0 (13)

We already know that X minimizes MSE. Therefore:
o Because MSE = Bias? + Var...

e ...and Bias(X) =0...

@ ...X must have the lowest variance of all unbiased estimators
X is efficient, or it is the best unbiased estimator (BUE).



BVT: Interpretation 2

The Bias-Variance Tradeoff has a more provocative — and useful! —
interpretation:

o Introducing bias may be beneficial if it sufficiently reduces
variance



BVT example

Trying to estimate p with data from 2 sources:
Q@ x; ~ N(u,5) fori=1,...,5
@ x; ~ N(u—0.5,5) for i =6,...,55
Consider 2 estimators:
O Unbiased: £ - S X
e MSE =
@ Biased: % . Z;r’il X
o MSE =



BVT example

Trying to estimate p with data from 2 sources:
Q@ x; ~ N(u,5) fori=1,...,5
@ x; ~ N(u—0.5,5) for i =6,...,55
Consider 2 estimators:
© Unbiased: -7 | x

o MSE = 4.98
@ Biased: % . 2,521 X;
o MSE = 0.66

Estimator 2 does introduce some bias because it's using data that did not
come from the “target” population...

...but it performs much better because it is much more stable! The bias
was worth the reduction in variance.

If you wanted to predict the temperature on 11/30/2024, would you look
at past data only from 11/30, or perhaps all days in late November?



BVT example, visualized
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Contrast with axiomatic approach

Sometimes, statistical techniques are motivated with an “axiomatic”
approach

@ Let's use the efficient estimator, i.e. lowest-variance unbiased
estimator, i.e. BUE

@ This is often how regression is motivated. Gauss-Markov Theorem
says OLS is BLUE.

(IMO), decision theory gives a much more compelling way to think about
statistical analysis.

@ Why restrict yourself to only unbiased estimators?

@ Doing so ignores that you can likely get more precise estimates by
admitting some bias

@ That tradeoff should be taken seriously

When we get to regression later in the semester, | will motivate it as the
result of decision theory, not from axioms as is often done.



Hypothesis Testing

A hypothesis test is a familiar use of decision theory.
Consider some parameter 6 that we are interested in. If 6 € © and
©p C O, then a null hypothesis is the following statement:

Ho : 0 € . (14)

The alternative hypothesis is:
Hy:0 € @8 (]_5)

A hypothesis test is a procedure for using data to decide whether to
reject Hy in favor of Hau.



Familiar approach

Suppose you have data drawn from a Normal distribution with mean p.
You want to test the following hypotheses:

Ho : = po; Ha:p # pio (16)

o le. “"©g = p,” "Of = the rest of R

Further suppose you have data randomly sample from that distribution,
{x1, ..., Xn}, with sample mean X.
Define: _
X — Ho
z=—— 17
sd()/ v/ (17)

Note that if Ho is true, z ~ N(0,1):
e E[z] = sd(x -(E[X] — o) =0

° var(z) __var(x) var(3x;)/n® _ n-var(x;)/n® -1

var(xj)/n —  var(x;)/n —  var(x;)/n




Familiar approach (2)

Hoiﬂzuo; Ha : v # 1o
~ N(0, 1)

X —
(X:)/f
Because z ~ N(0,1), P(|z| > 1.96) = 0.05.
e Equivalently, P(|x — po| > 1.96 - sd(x;)/+/n) = 0.05
Therefore, if |X — po| > 1.96 - sd(x;)/+/n, either:
@ Hp is wrong; or

z

@ Something very unusual just happened (i.e. less than 5% likelihood)

By definition, “very unusual” things are unlikely, so Hy seems unlikely to
be true

e We reject Hyp “at the 5% level.”

o If we had found |x — po| < 1.96 - sd(x;)/+/n, we would not reject Hyp
at the 5% level



Likelihood Ratio Test

Suppose x; ~ f(x|@), with unknown parameter 0, and we draw a random
sample from the population to form a dataset, {x, ..., s}

For any hypothesized value of 8, denoted by 6, the dataset’s likelihood
functions is given by:

n

L(x|0) = ] f(xil0) (18)

i=1

Given hypotheses Hy : 0 € ©g and Hjp : 6 € ©F, the test statistic of the
LRT is:

(19)



Likelihood Ratio Test (2)

Given hypotheses Hp : 0 € ©g and Ha : § € ©f, the test statistic of the
LRT is:

A(x) = w (20)
supéeeL(x|9)

@ The numerator is the best you can do if you restrict yourself to only
the hypothesized region of ©, ©g

@ The denominator is the best you can do when you have access to the
entire parameter space

Note that A(x) € [0,1]. A likelihood ratio test involves picking some
critical level, ¢, such that:

Q Hp is rejected if A(x) < ¢
@ Hp is not rejected if A(x) > ¢



LRT for Mean of a Normal RV

Suppose you have data drawn from a Normal distribution with mean pu.
You want to test the following hypotheses:

Ho : po = po; Ha @ b # o

It can be shown that L(x,8) is maximized at § = X. Therefore:

)\(X) _ L(X|IU’0)

- L(x[®)
_ exp(— (% — po)*/2)
exp(— Y (xi — X)?/2) (21)

_ exp((Z(X,- —2 =Y (- M0)2)/2)
= exp( = n- (%= 0)?/2)



LRT for Mean of a Normal RV (2)

Ho : po = po; Ha @ p # po

A(x) = exp( —n- (X~ 10)?/2)

Rejecting when A(x) < ¢ means we will reject when:

|X — ol > v/—2-In(c)/n=2z" (22)

Since ¢ € (0,1), z* € (0,00), so the LRT amounts to saying:
o If the sample mean is close enough to our hypothesized value (above
or below), we will not reject...

@ If the sample mean is far enough to our hypothesized value (above or
below), we will reject...
So the familiar test of comparing |X — | to 1.96 - sd(x;)/+/n is a specific
LRT.
e z* =1.96-sd(x;)//n



Type | and Type Il Errors

Accept Hy

Reject Hp

Hy is true

v

Type | Error

Hy is true

Type Il Error

v

There is a tradeoff between errors of Types | and II.
A permissive test could set ¢ low, e.g. z* high

@ High threshold for rejection



Type | and Type Il Errors

Accept Hy Reject Hp
Ho is true v Type | Error
Ha is true | Type Il Error v

There is a tradeoff between errors of Types | and II.
A permissive test could set ¢ low, e.g. z* high
@ High threshold for rejection
o Type I relatively rare
o Type Il relatively common
A strict test could set ¢ high, e.g. z* low
@ Low threshold for rejection

o Type | relatively common

o Type Il relatively rare



To operationalize these errors, we define the following:

@ A test's size is the highest probability of a Type | Error among all
0 € O

e If ©y =0, is a single value as in our prior example, then the size is
equal to P(Reject Hol0 = 6p)

o In your homework, you'll consider a test in which O is a set

@ A test's power function, 5(6), shows the probability of a Type |
Error for all values of 6 € ©f



Size and power function, example

Hypotheses:
Hy:pu=1, Hy:n#1
x/\f Note that if u =1, z ~ N(0, 1).
Consider two hypothe5|s testing approaches:
O Reject if [z] > z* =1.96
o Size: P(z<—-1.96|u—1=0)+P(z>1.96lp—1=0)=5%
@ Reject if |z| > z* = 2.58
o Size: P(z< —-258|u—1=0)+P(z>258]u—1=0)=1%
Note that the size of the test does not depend on the details of data!

Define z =

@ 0, and n are not part of the calculation; only z* matters

@ Such a test is designed so that if Hy is true, we have a fixed
probability (1%, 5%, etc) of incorrectly rejecting it

Power functions are more complicated...



Size and power function, example (2)

/a(mzf?((%]a*\ﬂx;]:u)
= X p " | E[xi] =
_P<Ux,-/ﬁ sl < b= )
o azid oo
-1 fl et
_P<z UX,/\f<Z AND Z + x,/\f -z ]E[x,]-,u)

(23)

So the probability of a Type Il Error is below, where Z ~ N(0, 1):

P(E ez~ U’i/_\; 2 oi,/f> | Elx] = ) (24)
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Size and power function, intuition

A tradeoff exists been size and power

@ You can avoid Type Il Errors by setting a high rejection threshold
(low size)...

o ...but then you open yourself up to a high probability of Type | Errors

@ You could set a low rejection threshold (high size), which will lead to
more Type Il Errors...

o ...but the benefit will be to reduce Type | Errors
Increasing sample size improves the tradeoff:

e Can lower one type of error without increasing the other one (or lower
both)



Power calculation, setup

These concepts can guide data collection/experimental design.
Suppose you want to evaluate the following hypothesis:

Ho:0=p1—p2=0;, Ha: 0 =1 — 2 #0 (25)

@ 11 is the population average in group 1

@ up is the population average in group 2

o Perhaps you are comparing earnings between people who receive job
training and those who do not

You will collect data from random samples of the two groups and estimate:
O0=p1—fip=%—% Z Xj— — Z X (26)
Group 1 Group 2

If data collection is costly, you need to think about how many observations
to get



Power calculation, setup (2)

Perhaps, like most economists, you want your size to be 5%
@ le., if # =0, you want to incorrectly reject Hy only 5% of the time
Let’s also assume o, = 30

@ Maybe you get this from a small initial sample, or from another
dataset on earnings

Finally, assume that based on you economic setting, you think it's very
important to reject Hp if |6 > 10.

@ le. if # =1 and you incorrectly accept that § = 0, maybe that's not
a big deal...

@ But if @ = 10 would lead an incorrect conclusion that @ = 0 to be
Hbad”



Power calculation

Since size is 5%, will reject if |z| > 1.96. Therefore:

6—0

P(Type | Error|6 = 10) = P( ——| < 1.96|0 = 10)

sd(6)
0 —10 10

_ p( ) + e <1.96|0 = 10) (27)

1
—p(lz+ 20 | <196,
sd(0)

where Z ~ N(0,1). Further note:

A

sd() = \/ var()
= \/var(%;) + var(%) (28)

=\/0%/m + 0%/




Power calculation (2)

So:

P(Type | Error|6 = 10) = p(

1
=P|z<1.96— 0 (29)
v/302/n1 +302/n,

—Plz<-1.96— 10
\/302/n1 + 302/,

If:
@ ny = np = 50, this is 61.5%
@ ny = np = 100, this is 34.6%

If you deem that a 10% probability of this error is acceptable, need
n = ny >= 190



Power calculation, visualize

A — =10, size = 5%
b — =20, size =5%
= = u=10, size = 1%
= = n=20 size =1%

P{Type | Error)




Power calculation, intuition

Need more data when:

@ You want to keep the probability of Type | Error low (1% vs. 10%)

@ When you want to keep the probability of a Type Il error low (1% vs.
5%)

© You want to rule out values closer to the null hypothesis (10 vs. 20)

This relatively simple application of statistics tells you how much data you
need to gather!



p-values

A hypothesis test gives a binary result.
e E.g. “If |z| > 1.96 | will reject Hp; otherwise | will not.”
A p-value of a null hypothesis is the lowest tolerated size for which the
test would be rejected.
@ Recall, size is P(Reject Hy| Hp true).
e So if size = 5%, you are willing to reject Hy 5% of the time when it is
true
o If you observe z = 3.525 > 1.96, you would reject for size = 5%
o But you would also reject for size = 1%, since z = 3.525 > 2.58
e Taking this to its limit, P(|z| > 3.525) = 0.04%
o Intuitive interpretation: “If Hy is true, the data | observed (z = 3.525)
is so extreme that it only had a 0.04% chance of occurring. Therefore,

if my tolerance for a Type Il Error is greater than 0.04%, | will reject
Ho."

@ So the p-value = 0.04%.
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p-values, visualized

z 000 001 002 003 004 005 006 007 0.08 0.09

0.0 | 5000 5040 5080 5120 3160 5199 5239 5279 5319 5359
0.1 | 5398 5438 5478 5517 5557 5596 5636 5675 574 5753
0.2 | 5793 5832 5871 5910 5948 5987 6026 6064 6103 6141
0.3 | 6179 6217 6255 .6293 6331 6368 6406 6443 6480 6517
04 | 6554 6591 6628 6664 6700 6736 6772 608 6844 6879

05| 6915 6950 6985 019 7054 T0BR  TI23 7157 7190 724

0.6 389 7412 T 7486 7517 7549
0.7 JI04 773 T764 7194 TB23 (TES2
0.8 7995 8023 8051 8078 8106 8133
0.9 8264 8289 8315 8340 8365 8380
10 8308 8531 8554 R577T K599 R621
11 8729 8749 K770 8790 8810 8830
12 8925 8044 8062 8980 8997 9015
13 9085 9115 9131 9147 9162 9177
14 9251 9265 9279 9292 9306 931%
1.5 9382 9394 9406 9418 9429 9441
16 9495 9505 9515 9525 9535 9545
1.7 9591 9599 9608 9616 9G35 9633
18 9671 9678 9686 9603 9699 9706
19 9738 9744 9750 9756 9761 9767
20 9793 9798 9803 980B 9812 9817
24 9835 9842 9846 98BS0 9BS4  9BST
22 9875 9878 9881 O8R4 9RRT  .9ROD
23 9904 9906 9908 9911 9913 9916
24 9927 9929 9931 9932 9934 9936
25 9945 9946 9948 9940 9951 9952
26 9959 9960 9961 9962 9963 9964
27 9960 9970 9971 9972 9973 9974
28 9977 9978 9979 9979 9980 9981
29 9984 G9B4 G985 G985 9986 9986
3.0 9983 9980 .998%  9UEY %90 9990
31 9992 9992 9992 9992 9993 5993
32 9994 9994 9994 8995 9995 9995
33 9996 9996 999G 9996 9996 9997
3.4 9997 T 3997 9997 9997  999%
35 9998 9998 9998 9998 9998  099%
3.6 9999 9999 9999 9999 %9%9 9999




p-values, visualized

A 8 C D
=norm.dist(3.525,0,1,1 |

| MORMLDIST (x, mean, standard_dev, cumulative) |

S PRI L% R

0.99938

un



p-values, visualized

"R R Console (=]

-- "Funny-Looking Kid"
022 THE R Foundation for Statistical Computing

R version 4.2.1
Copyright (C) 2
Platform: x86_ 64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NC WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type '"contributors()' for more information and
"citation()" on how to cite R or R packages in publications.

Type 'demo()' for some demos, "help()' for on-line help, or
"help.start ()" for an HTML browser interface to help.
Type 'q()' to quit R.

» pnorm(3
[1] 0.9997883
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Set Estimation

So far we have focused on point estimation
© Produce a single “best guess” of a parameter
© Test whether that parameter is equal to a certain hypothesized value

But perhaps we need not be constrained to giving a single “best guess”
@ Maybe, a set of “reasonable guesses” would suffice
o E.g. "l think p is between 1.5 and 2.3," rather than “I think g is 1.9.”

The main manifestation of this in applied econometrics is confidence
intervals



Inverting a Hypothesis Test

Recall our standard test of Hy : = pg

X — Ko ’ *
>z
ox/Vn
While this can be used to test a specific 9, we can also rearrange to find
all values of pg such that the test will not lead to rejection:

Reject Hy if

Do not reject Hy if

x,/\f
— Mo *
—Z

X —
if < z* AND
ax,/f Gx,/f
¥ Ox

|f,u0>x—z*-(:%AND,uo<x+z
*_UXi]

ifuoe [x— 2zt 2% x4+
| X—2zZ «-—,X z
Ho NG NG

=]




Confidence Intervals

Cl(x1,y .oy Xp) = [)'(—z*- %,)?—i-z*- %] (30)
By choosing z* to correspond to a hypothesis test of size «, the set Cl is
called a (1-a) confidence interval

e E.g. by setting z* = 1.96, we get a 95% confidence interval

Note that Cl(x) is a RV, since it is a function of randomly sampled data.
Furthermore, p € CI(x) with probability 1 — «.

@ Suppose i = [i

e Drawing a X so far away from [i that i € Cl(x)°...

@ ...is the same event as rejecting Hp : © = fi, even though it's true.
@ The latter occurs with probability «, so the former must as well

@ So P(ieCl(x)=1—-«



Confidence interval, example

X =25 0, =15

95% Cl:
@ n=10: [15.7,34.3]
@ n=30: [19.6,30.4]



Alternative confidence sets

X =250, =15,n=10
e P(u € [15.7,34.3]) = 95%.
Note also:
QO P(u € [—00,24.7] U [25.3,00]) = 95%

Q P(u € [—00,32.8]) = 95%

© P(u € [17.2,00]) = 95%

What do you think of these alternatives?
°



Alternative confidence sets

X =25, 0, =15,n=10
e P(u € [15.7,34.3]) = 95%.
Note also:
Q P(u€[—00,24.7] U [25.3,¢]) = 95%

o Seems awful. We've ruled out only a tiny interval, [24.7,25.3], and it's
the interval that contains the point estimate, 25!

Q@ P(u € [—00,32.8]) = 95%

Q@ P(ue[17.2,0]) = 95%

What do you think of these alternatives?
°



Alternative confidence sets

X =250, =15n=10
e P(u € [15.7,34.3]) = 95%.
Note also:
Q P(u€[—00,24.7] U [25.3,¢]) = 95%

o Seems awful. We've ruled out only a tiny interval, [24.7,25.3], and it's
the interval that contains the point estimate, 25!

Q P(u € [—00,32.8]) = 95%
e Much wider than the original, but if you really don't want to miss too
high, this is better.

© P(un€e[17.2,¢]) = 95%
[}
What do you think of these alternatives?



Alternative confidence sets

X =125, 0, =15,n=10
e P(u€[15.7,34.3]) = 95%.
Note also:
Q P(un € [—00,24.7] U [25.3,0]) = 95%

o Seems awful. We've ruled out only a tiny interval, [24.7,25.3], and it's
the interval that contains the point estimate, 25!

@ P(u € [-o0,32.8]) = 95%
e Much wider than the original, but if you really don't want to miss too
high, this is better.
Q P(u e [17.2,00]) = 95%
e Much wider than the original, but if you really don't want to miss too
low, this is better.
What do you think of these alternatives?

@ The original is the shortest, which seems desirable. But options 2 and
3 are the inversions of the tests of Hyp : 1 < po and Hp : > pyo,
respectively, so could be defensible depending on your goals.



