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Optimizing Under Constraints

Ubiquitous problem in economics:

Agent is “rational,” i.e. chooses best available option

Agent is constrained, i.e. cannot have everything she wants

In math terms, this is “constrained optimization.”
Canonical problem:

Agent gets utility from two goods, given by u(x1, x2).

Agent has income I and faces constant prices, p1 and p2
Normalize p1 = 1, denote p ≡ p2

We’ll look at the more general problem later, but the 2-good setting
is very instructive (and common)

Two typical approaches:

1 Substitution

2 Lagrangian



Substitution

Agent’s problem: maximize u(x1, x2) s.t. x1 + p · x2 ≤ I .
Assume u1, u2 > 0, so the agent will spend all income. Constraint:

x1 + p · x2 = I (1)

Can formulate unconstrained problem via substitution:

max
x2

u(I − p · x2, x2) (2)

Find local extrema: set du
dx2

= 0

du

dx2
= −p · u1(I − p · x∗2 , x∗2 ) + u2(I − p · x∗2 , x∗2 ) = 0 (3)

or more succinctly:

du

dx2
= −p · u1 + u2 = 0 (4)

This is known as a “First-Order Condition (FOC)”: any local max of a
differentiable function will obey this



Substitution (2)

FOC implicitly characterizes x∗2 , so we have two equations and 2 unknowns:

1 p · u1(x∗1 , x∗2 ) = u2(x
∗
1 , x

∗
2 )

2 x∗1 + p · x∗2 = I

Technically, need to make sure second derivative/Hessian is negative
(definite): we’ll get to that later.
Other than that, we’re kind of done. Can:

1 Mine implicit solution for insight

FOC: u2/u1 = p (Marginal Rate of Substitution equals price ratio)

2 Make parametric assumptions to get explicit solution

If u = xα1 · x1−α
2 , then x∗1 = α · I and x∗2 = (1− α) · I/p



Lagrangian

Lagrangian approach is more involved but more powerful. We define a new
object L and a constant λ with:

L(x1, x2, λ) = max
x1,x2,λ

u(x1, x2) + λ · (I − x1 − p · x2) (5)

For this to have a local max at some (x∗1 , x
∗
2 , λ

∗), 1 of 2 things must be
true:

1 Either: I = x∗1 + p · x∗2 ;
2 Or: λ∗ = 0

If I ̸= x∗1 + p · x∗2 , then we can get L to go to ∞ with λ → ∞ (or −∞), so
it would not be a local max.
The Lagrangian is essentially a trick to get our tools from unconstrained
problems to carry over to a constrained problem

The possibility of λ∗ = 0 is a complication we will discuss later



Lagrangian Cookbook

FOCs (∇L(x∗1 , x
∗
2 , λ

∗) = 0):

1 ∂L
∂x1

= u1(x
∗
1 , x

∗
2 )− λ∗ = 0

2 ∂L
∂x2

= u2(x
∗
1 , x

∗
2 )− p · λ∗ = 0

3 ∂L
∂λ = I − x∗1 − p · x∗2 = 0

This is 3 equations in 3 unknowns. Can rearrange as:

1 p · u1(x∗1 , x∗2 ) = u2(x
∗
1 , x

∗
2 )

2 x∗1 + p · x∗2 = I

1-2 are exactly the same as the Substitution approach

3 λ∗ = u1(x
∗
1 , x

∗
2 ) = u2(x

∗
1 , x

∗
2 )/p



Understanding the Solution: Univariate Intuition

Consider the nearly-trivial univariate problem of maximizing
f (x) = −(2− x)2, constrained by x ≤ 1.5
Solution is obviously to get as close to x = 2 as possible.

Given the constraint, x∗ = 1.5.

Applying the cookbook:

L(x , λ) = −(2− x)2 + λ · (1.5− x)

FOCs:

1 wrt x : 2 · (2− x) = λ∗

2 wrt λ: 1.5 = x∗

λ∗ reveals how much better we could do if the constraint were eased.

λ∗ = 1 = df
dx (1.5) – slope of f when we were forced to stop at x = 1.5

“Shadow price” of the constraint



Understanding the Solution: Back to the Multivariate
Problem

λ∗ = u1(x
∗
1 , x

∗
2 ) = u2(x

∗
1 , x

∗
2 )/p

λ∗ is the “marginal utility of income”
A small change in income of dI will increase utility by λ∗ · dI

1 Or u1 · dI
2 Or u2/p · dI

What is the economic intuition for why u1 = u2/p?
Recall: dx2

dx1
|dU=0 =

MU1
MU2

So: dx2
dx1

|dU=0 = p.

Slope of constraint (p) equals slope of objective’s contour map.



Many Goods and Many (Equality) Constraints

These ideas generalize with many goods and constraints
Let f : Rn → R1 be a differentiable objective function and
h1, ..., hm : Rn → R1 be differentiable equality constraint functions.

I.e. we want to find x ∈ Rn that maximizes f , where
h1(x) = a1,...hm(x) = am.

For, x∗, a local extremum in the constrained subset of Rn, there exist
λ∗
1,...,λ

∗
m that satisfy:

∂L

∂xi
= 0 for i = 1, ..., n (6)

∂L

∂λj
= 0 for j = 1, ...,m (7)

for the following Lagrangian:

L(x , λ) ≡ f (x) + λ1 · (a1 − h1(x)) + ...+ λm · (am − hm(x)) (8)



Practice Problem

Maximize f (x , y , z) = x1/2 + y1/2 + z1/2 such that x + y + z = 17 and
x · y = 16.
Lagrangian:

L(x , y , z , λ1, λ2) = x1/2+y1/2+z1/2+λ1 ·(17−x−y−z)+λ2 ·(16−x ·y)

FOCs:

1 1
2 · x−1/2 = λ1 + λ2 · y

2 1
2 · y−1/2 = λ1 + λ2 · x

3 1
2 · z−1/2 = λ1

4 17 = x + y + z

5 16 = x · y
(The “*”s are suppressed for readability.)
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Practice Problem: Solution

FOCs 1 and 2: x∗ = y∗

FOC 5: x∗ = y∗ = 4
So, FOC 4: z∗ = 9
FOC 3: λ∗

1 = 1/6
FOC 1 (or 2): λ∗

2 = 1/48
f (x∗, y∗, z∗) = 7
Suppose we changed the first constraint to x + y + z = 18. What do you
think f (x∗, y∗, z∗) would be?
Suppose we changed the second constraint to x · y = 17. What do you
think f (x∗, y∗, z∗) would be?



Practice Problem: Solution

FOCs 1 and 2: x∗ = y∗

FOC 5: x∗ = y∗ = 4
So, FOC 4: z∗ = 9
FOC 3: λ∗

1 = 1/6
FOC 1 (or 2): λ∗

2 = 1/48
f (x∗, y∗, z∗) = 7
Suppose we changed the first constraint to x + y + z = 18. What do you
think f (x∗, y∗, z∗) would be?
≈ 7 + 1/6
Suppose we changed the second constraint to x · y = 17. What do you
think f (x∗, y∗, z∗) would be?
≈ 7 + 1/48
You can confirm these on your own.



Shortcomings of the Approach So Far

Return to the univariate problem but change the constraint:

L(x , λ) = −(2− x)2 + λ · (2.5− x)

FOCs:

1 wrt λ: 2.5 = x∗

2 wrt x : 2 · (2− x) = λ∗ → λ∗ = −1

We know this is wrong; optimal choice is x = 2 ̸= 2.5. What happened?

FOC wrt λ imposes that the constraint holds with equality.

It correctly ruled out any possibility with x > 2.5

But it also ignored any possibility with x < 2.5

To allow for the possibility that the constraint won’t bind (i.e. will be
“slack”), we need a more involved cookbook.
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A Simple Problem with An Inequality Constraint

Use same Lagrangian as before:

L(x , λ) = −(2− x)2 + λ · (2.5− x)

Still take a FOC with respect to x :
1 2 · (2− x∗)− λ∗ = 0

But FOC wrt λ is replaced with “complementary slackness conditions:”
1 λ∗ · (2.5− x∗) = 0
2 λ∗ ≥ 0
3 2.5− x∗ ≥ 0

Comp. Slack #1: “Either the constraint binds (x∗ = 2.5) or λ∗ = 0.”
1 x∗ = 2.5: λ∗ = −1, which violates Comp. Slack #2!

Note, f (2.5) = −0.25
2 λ∗ = 0: x∗ = 2 (from FOC)

Correct answer: we’ve maximized f (x) at x = 2, and we obey all
conditions

λ∗ = 0 means we do not benefit from loosening the constraint because
it is already irrelevant/slack. Constraint disappears from calculations.



Two-Good Problem with Inequality Constraint

Maximize u(x1, x2) s.t. x1 + p · x2 ≤ I .

L(x1, x2, λ) = max
x1,x2,λ

u(x1, x2) + λ · (I − x1 − p · x2)

Solution obeys:

1 u1 = λ∗

2 u2 = p · λ∗

3 λ∗ · (I − x∗1 − p · x∗2 ) = 0

4 λ∗ ≥ 0

5 x∗1 + p · x∗2 ≤ I

2 possibilities:
1 λ∗ = 0 (slack constraint: some income unspent)

Implies u1 = u2 = 0

2 x∗1 + p · x∗2 = I

Same solution we found previously (u1 = u2/p)
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Inequality Constraints in Practice

In most economic settings, the constraint is an inequality

E.g. “Spend at or below your income.”

However, in most economic models, the constraint will bind.

We typically assume people will always want more.

Mathematically, u1, ..., un > 0.

So in practice, we typically do not bother with the complementary
slackness conditions.

Say something like, “Due to positive marginal utility, the constraint
will bind.”

Then, you can use the simpler cookbook for equality constraints, just
setting ∂L

∂x = 0 and ∂L
∂λ = 0.

But if you’re ever in a non-standard setting where a constraint might not
bind, you need to go through the full process with the complementary
slackness conditions!



Constrained Local Maxima In General

SB Theorem 18.5
Let x∗ be a local maximum of f (x) : Rn → R1, a differentiable objective
function, on the set of x that respect the following constraints:
g1(x) ≤ b1, ..., gK (x) ≤ bK
h1(x) = c1, ..., hM(x) = cM .
Assume all g and h functions are differentiable. Then, with a Lagranian
defined as:

L(x , λ, µ) ≡ f (x) +

K∑
k=1

λk · (bk − gk(x)) +

M∑
m=1

µm · (cm − hm(x)),

there exist λ∗
1,...,λ

∗
K , and µ∗

1,...,µ
∗
M such that:

1
∂L(x∗,λ∗,µ∗)

∂x1
= 0,..., ∂L∂xn

= 0
2 h1(x

∗) = c1,...,hM(x∗) = cM
3 λ∗

1 · (b1 − g1(x
∗)) = 0,...,λ∗

K · (bK − gK (x
∗)) = 0

4 λ1 ≥ 0,...,λK ≥ 0
5 g1(x

∗) ≤ b1,...,gK (x
∗) ≤ bK
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∗) ≤ bK



Second-Order Condition

A local maximum of a problem with equality constraints should obey the
FOCs we’ve focused on so far:

∂L
∂xi

= 0, ∂L
∂λj

= 0

But even if some x satisfies the FOCs, it may not be a local maximum. It
could be:

A local minimum

Neither a max or a min

For unconstrained optimization, we saw that a critical point (∇f (x) = 0)
is a maximum if its Hessian, H(x), is negative definite.

As a Hessian is the multivariate second derivative, this is called a
“Second-Order Condition (SOC)”

Things are a bit harder in constrained maximization, but it still comes
down to the negative definiteness of a Hessian.
We will start with a derivation with a 2-dimensional x with a linear
constraint, but the ideas hold in more general settings.



f : R2 → R1, Single Linear Constraint SOC Derivation

Maximize f (x1, x2) s.t. x2 =
Y−x1

p ≡ ϕ(x1).

Define g(x1) ≡ f (x1, ϕ(x1))

Now have unconstrained problem: maximize g . So need to find x∗1 s.t.
g ′(x∗1 ) = 0 and g ′′(x∗1 ) < 0.
Chain Rule: dg

dx1
(x∗1 ) =

∂f
∂x1

(x∗1 , ϕ(x
∗
1 )) +

∂f
∂x2

(x∗1 , ϕ(x
∗
1 )) ·

dϕ
dx1

(x∗1 )

For concision, will say that FOC is g ′ = f1 + f2 · ϕ′ = 0

Use Chain Rule again to get second derivative:
g ′′ = f11 + f12 · ϕ′ + (f21 + f22 · ϕ′) · ϕ′

SOC: f11 + 2 · f12 · ϕ′ + f22 · (ϕ′)2 < 0



Bordered Hessian

Write constraint as h(x1, x2) = c :

h(x1, x2) = x1 + p · x2 = Y

Lagrangian:

L(x1, x2, λ) = u(x1, x2) + λ(Y − h(x1, x2))

Lagranian’s Hessian, called “Bordered Hessian:”

H̄(x, λ) ≡


∂2L
∂λ2

∂2L
∂λ∂x1

∂2L
∂λ∂x2

∂2L
∂λ∂x1

∂2L
∂x2

1

∂2L
∂x1∂x2

∂2L
∂x2

∂2L
∂x1∂x2

∂2L
∂x2

2

 =

[
0 −h1 −h2

−h1 f11 f12
−h2 f12 f22

]
=

[
0 −1 −p
−1 f11 f12
−p f12 f22

]

Top-left is 0

Bottom-right is Hessian of f (x1, x2)

Upper border is gradient of constraint

Left border is also gradient of constraint



Bordered Hessian and SOC

Determinant of Bordered Hessian:

det

 0 −1 −p
−1 f11 f12
−p f12 f22

 = 0−−1 · (−f22 −−p · f12) +−p · (−f12 −−p · f11)

= −p2 · f11 + 2 · p · f12 − f22.
So det(H(x, λ) > 0 ⇐⇒ f11 − 2

p · f12 + f22 · 1
p2

< 0
Recall our SOC from earlier:

f11 + 2 · f12 · ϕ′ + f22 · (ϕ′)2 < 0, where ϕ′(x) = −1/p

SOC holds ⇐⇒ f11 − 2
p · f12 + f22 · 1

p2
< 0

In other words, SOC holds (i.e. we found a max) when the determinant of
the Bordered Hessian is positive!



Extending to Many xs and Many Constraints

More generally, if you have N goods and K constraints, the Bordered
Hessian should be (N + K )x(N + K ), with the same 4 regions (see e.g.
SB Chapter 19, Equation 15):

Top-left is a KxK matrix of 0

Bottom-right is a NxN Hessian of f (x1, x2)

Upper right (next to the 0s, above the Hessian) is a KxN matrix,
where the top row is the gradient of the first constraint, etc.

Bottom left (below to the 0s, next to the Hessian) is a NxK matrix,
where the left column is the gradient of the first constraint, etc.

The SOC holds if the determinant of the Bordered Hessian has the same
sign as (−1)N and the determinants of the largest N − K principal
submatrices have alternating signs.

So in the N = 2, K = 1 case we did, we only had to check one
determinant. In larger problems, there will be more computation.



SOC for a Minimization Problem

For a Bordered Hessian as described on the previous slide, the SOC for a
minimization problem holds if the determinant of the Bordered Hessian
and all N − K of its largest principal submatrices all have the same signs
as (−1)N .



Concavity and Optimization

A concave function, f , is one such that for all t ∈ [0, 1]:

f (t · x+ (1− t) · y) > t · f (x) + (1− t) · f (y) (9)

In the univariate case, this amounts to having a negative second
derivative: f ′′(x) < 0.
This intuition carries over to the multivariate case: a multivariate function
f is concave if and only if its Hessian is negative definite.

Consider x and y in f ’s domain and define g(t) ≡ f (t · x+ (1− t) · y).

Can show g ′′(t) = (x− y)T · H · (x− y) (see SB, p. 514)

So g ′′(t) < 0 for all x, y, and t precisely when H is negative definite.

So if you know your function is concave, you do not need to worry about
SOC: it will be satisfied.



Quasiconcavity

A quasiconcave function, f , is one such that for all t ∈ [0, 1]:

f (t · x+ (1− t) · y) > min{f (x), f (y)} (10)

All concave functions are quasiconcave, but not vice versa.
An alternative definition useful for economists:
For all a ∈ R1, the set {x : f (x) ≥ a} is a “convex set”.

A set U is convex if ∀x, y ∈ U and t ∈ [0, 1], t · x+ (1− t) · y ∈ U.

Quasiconcavity is a deeper concept than concavity because it is preserved
by monotonic transformations.
E.g. f (x) = x1/2

f (x) is concave and quasiconcave

But f (x)4 = x2

Is no longer concave

Remains quasiconcave

So quasiconcave is an “ordinal” feature of a function, unlike concavity.



Quasiconcavity and Optimization

We will not show this, but quasiconcavity is the minimal assumption
that ensures that a critical point is the global max of a differentiable
function

So if you know your function is quasiconcave, you do not need to
check SOC: it will be satisfied.

Since quasiconcavity is less strict than concavity and is an ordinal
property, it is common for economists to assume objective functions
are quasiconcave when doing proofs.

You will probably see that a lot in micro theory courses.

In practice when solving problems with explicit utility functions,
concavity is far more transparent in terms of derivatives, so that’s
usually focused on


