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Rate of Change

Consider function f (x)

f : R1 → R1, i.e. input x is scalar, output is a scalar

Consider two points in f ’s domain: x0 and x0 + h
Average rate of change of f from x0 to x0 + h is:

∆f (x0; h) ≡
f (x0 + h)− f (x0)

x0 + h − x0
=

f (x0 + h)− f (x0)

h
(1)

“Rise over run”

“Within [x0,x0 + h], what is the average increase in f (x) when x
increases by 1 unit?”



Instantaneous Rate of Change

∆f (x0; h) =
f (x0 + h)− f (x0)

h

Seems reasonable to ask, “How quickly is f changing precisely at x0?”
Tempting to set h = 0, but then we get indeterminate answer:

∆f (x0; 0) =
f (x0)− f (x0)

0
= 0/0 =??

Instead, we take the limit: lim
h→0

∆f (x0, h)

“What is the average increase in f (x) as x moves away from x0, but
by an arbitrarily small amount?”

This is known as the “derivative”, denoted f ′(x) or df /dx .



Limit

A function, f (x) has a limit of L as x approaches p if:

For every ϵ > 0...

there exists a δ(ϵ) > 0 such that...

if |x − p| ∈ (0, δ(ϵ))...

then |f (x)− L| < ϵ.

In notation:
∀ϵ > 0,∃δ(ϵ) > 0 s.t. |x − p| ∈ (0, δ(ϵ)) ⇒ |f (x)− L| < ϵ



The Derivative

f ′(x) ≡ lim
h→0

f (x0 + h)− f (x0)

h
(2)

Example: f (x) = x2, x0 = 3

f ′(x0) ≡ lim
h→0

f (x0 + h)− f (x0)

h

= lim
h→0

(x0 + h)2 − x20
h

= lim
h→0

x20 + h2 + 2 · x0 · h − x20
h

= lim
h→0

h + 2 · x0
= 2 · x0

f ′(3) = 6.



Undefined Derivatives

Sometimes you get “different limits” when h → 0 in different ways.

More precisely, this means the limit does not exist

Consider f (x) = |x |. Suppose we have h approach 0 from above:

f ′(0) =
|0 + h| − |0|

h
=

h

h
= 1?

Now have h approach 0 from below:

f ′(0) =
|0 + h| − |0|

h
=

−h

h
= −1?

The derivative of f (x) = |x | is not defined at x = 0 because the rate of
change depends on which direction you’re going.
We typically work with “well-behaved” functions, but you need to be
careful when working on problems with sharp/discrete changes.

E.g. Minimizing squared errors vs absolute errors



Special Functions

Some important cases to know cold:

f (x) = xn → f ′(x) = n · xn−1

f (x) = ln(x) → f ′(x) = 1/x

f (x) = ax → f ′(x) = ln(a) · ax
f (x) = ex → f ′(x) = ex



Rules of Derivatives

1 For a scalar k : (k · f )′(x) = k · f ′(x)
2 For two functions f and g : (f + g)′(x) = f ′(x) + g ′(x)

3 Product Rule: (f · g)′(x) = f ′(x) · g(x) + f (x) · g ′(x)

4 Quotient Rule: (f /g)′(x) = g(x)·f ′(x)−f (x)·g ′(x)
g(x)2

“Ho-dee-hi minus hi-dee-ho, all over hoho”



The Chain Rule

Consider f (x) ≡ h(g(x)).

E.g. g(x) = ln(x), h(x) = x2 → f (x) = ln(x)2

Derivative of f (x) is found with the Chain Rule:

f ′(x0) = g ′(x0) · h′(g(x0))

df /dx =
dg

dx
· dh
dg

(3)

“x moves g by g ′, which then moves f by h′ per unit: f ′ = g ′ · h′.”
f (x) = ln(x)2 → f ′(x) = 2 · ln(x) · 1

x

The Chain Rule could just be “rule 5” on the previous slide, but it’s a bit
harder and quite important.



Higher-Order Derivatives

Can take the derivative of a derivative (“second derivative”)...and
derivative of second derivative (“third derivative), and so on...

f (x) = 1/x

1 f ′(x) = −1/x2

2 f ′′(x) = 2/x3

3 f [3](x) = −6/x4

4 ...

Away from x = 0, all ∞ derivative functions exist. Therefore, f (x) = 1/x
is “continuously differentiable” – or “smooth” – for x ̸= 0.



First-Order Taylor Approximation

A first order Taylor Polynomial around a in the domain of f is:

f̃ (a+ h) = f (a) + f ′(a) · h (4)

Note that f̃ is a good approximation of f around a in the following sense:

lim
h→0

f (a+ h)− f̃ (a+ h)

h
= lim

h→0

f (a+ h)− (f (a) + f ′(a) · h)
h

= lim
h→0

f (a+ h)− f (a)

h
− f ′(a)

= f ′(a)− f ′(a)

= 0

In words, no matter how small your desired margin of error, you can find h
small enough to meet it.



Higher-Order Taylor Approximations

Common to see second-order Taylor approximation:

f̃ (a+ h) ≈ f (a) + f ′(a) · h +
1

2
· f ′′(a) · h2 (5)

Won’t prove this one, but intuition is that both first and second
derivatives are correct at a:

lim
h→0

f̃ ′(a+ h) = lim
h→0

f ′(a) + f ′′(a) · h = f ′(a)

lim
h→0

f̃ ′′(a+ h) = lim
h→0

f ′′(a) = f ′′(a)

Can do higher-order approximations:

f̃ (a+h) ≈ f (a)+f ′(a)·h+1

2
·f ′′(a)·h2+ 1

2 · 3
·f (3)(a)·h3+...+

1

n!
·f (n)(a)·hn+...

(6)



Taylor Approximations (picture)



Concavity/Convexity

First and second derivatives are often discussed.

f ′ determines increasing ( > 0) vs. decreasing ( < 0)

f ′′ determines convex ( > 0) vs. concave ( < 0)

Cases:

f ′(x) > 0: f (x) is increasing...
1 f ′′(x) > 0: ...at an increasing rate
2 f ′′(x) < 0: ...at a decreasing rate

f ′(x) < 0: f (x) is decreasing...
1 f ′′(x) > 0: ...at an increasing rate
2 f ′′(x) < 0: ...at a decreasing rate



The Maximum of a Function

Want to find the maximum of a function f (x) on the domain [a, b].

1 Can rule out points with f ′(x) ̸= 0. Why?

2 Can rule out points f ′(x) = 0 and f ′′(x) > 0. Why?

What’s left?

1 Points with f ′(x) = 0 and f ′′(x) < 0 – local maxima

2 Points with f ′(x) = 0 and f ′′(x) = 0 – possible local maxima...
3 Points where f ′(x) or f ′′(x) are not defined

Most notably, the boundaries



Unconstrained Maximization Cookbook

General approach

1 Calculate f ′(x)

2 Identify points {x1, x2, ...} with f ′(x) = 0 or f ′(x) undefined

3 Calculate f (x) at all such points – choose the largest.

In many economics settings, we work with functions such that f ′(x) > 0
and f ′′(x) < 0 for all x

Increasing, concave functions

In this case, there is exactly 1 local maximum, and it is the global
maximum.

Find it by setting f ′(x) = 0 and solving for x .



The Antiderivative

Define F (x) to be the “antiderivative” of f (x), meaning F ′(x) = f (x).
Just uses rules of derivatives in reverse

E.g. If f (x) = 2 · x , then F (x) = x2+C , where C is a scalar constant

It works: F ′(x) = 2 · x + 0

C is called the “constant of integration”

The antiderivative is not unique: any value of C would work, so there are
∞ solutions.
Anitderivative (also called the “indefinite integral”) of f (x) is helpful for
calculating “area under a curve”...



Integration

Derivatives measure an instantaneous change

E.g. “How much water is flowing into the tub at this instant?”

Integrals measure an accumulated change

E.g. “How much water flowed into the tub between times a and b?”

Let f (x) be the instantaneous flow of water, defined for x ∈ [a, b].
Define W to be amount of water accumulated from x = a to x = b.
W can be:

1 Approximated as a sum

2 Solved exactly as a “definite integral”



Riemann Sum

To calculate Riemann Sum of area under curve:
1 Partition [a, b] into intervals

For simplicity, N ≡ b−a
∆ equally-sized intervals of width ∆, indexed by i

2 Assign height to each section, f̃ (x)i , and create corresponding
rectangle

In picture, height is f̃ (x)i = f (max{x}), i.e. f (x) at rightmost point in
each interval

3 Calculate rectangle areas and sum them up



The Fundamental Theorem of Calculus

Fundamental Theorem of Calculus:

W = lim
∆→0

N∑
i=1

f̃ (x)i ·∆ ≡
∫ b

a
f (x) · dx ≡ F (b)− F (a). (7)

E.g. f (x) = 2 · x , a = 0, b = 4:

F (x) = x2 + C∫ b
a f (x) · dt = 42 + C − (02 + C ) = 16

Does not matter that we never solved for C – it canceled out!

C is like an initial condition at time a

We do not need to know how much water was in the tub at time a to
know how much flowed in between a and b.



Multivariate Functions

We will now consider multivariate functions, f : Rn → R1

E.g. Utility depends on multiple goods u(x1, x2) = xα1 · x1−α
2

E.g. H(x , t) heat depends on time of day (t) as well as actions taken
by agent (x).

Profit may depend on price, and quatity – which depends on price:
Π(x(p), p)

Multivariate calculus builds very directly off of single-variable calculus



Partial Derivative

For f (x) ≡ f (x1, ..., xn), the “partial derivative of f with respect to xi” is
the impact of a marginal change in xi , holding all other xj ̸=i constant:

∂f

∂xi
(x0) = lim

h→0

f (x01 , ...x
0
i + h, ..., x0n )− f (x01 , ...x

0
i , ..., x

0
n )

h
(8)

This essentially identical to the derivative from the single-variate case (“∂”
instead of “d”).
The multivariate analog of “the derivative” (called the “Jacobian” or
“gradient”) of f is just the collection the individual partial derivatives:

∇f (x) =
[ ∂f

∂x1
, ...,

∂f

∂xn

]
.



Total Derivative

Partial derivative moves xi , holds all xj ̸=i constant. In contrast, “total
derivative” considers simultaneous marginal changes in all variables. In
particular, for small dxi s:

df (x0) =
∂f

∂x1
(x0) · dx1 + ...+

∂f

∂xn
(x0) · dxn (9)

E.g. Change in utility from perturbing bundle (x1, x2) is:

dU =
∂U

∂x1
· dx1 +

∂U

∂x2
· dx2 = MU1 · dx1 +MU2 · dx2.

Holding utility constant, we get the slope of the indifference curve:

dx2
dx1

|dU=0 = −MU1

MU2



Rules of Derivatives in the Multivariate Case

All of the rules discussed earlier for single-variable derivatives carry over for
partial derivatives.
Note that Chain Rule can become more interesting in the multivariate
case. Suppose f (Y ) = g(x1(Y ), ..., xn(Y )). Then:

df

dY
(Y 0) =

∂g

∂x1
(x(Y 0)) · x ′1(Y 0) + ...+

∂g

∂xn
(x(Y 0)) · x ′n(Y 0)

To get the impact of income (Y ) on f ...

1 Look at how each xi is affected (x ′i (Y
0))

2 Multiply by the sensitivity of g to that particular xi (
∂g
∂xi

)

3 Sum up across all i



Interesting Special Case: Leibniz Rule

Let W (x) =

∫ b(x)

a(x)
f (x , t) · dt. Then:

dW

dx
= f (x , b(x)) · db

dx︸ ︷︷ ︸
Gain on margin

− f (x , a(x)) · da
dx︸ ︷︷ ︸

Lose on margin

+

∫ b(x)

a(x)

∂f

∂x
· dt︸ ︷︷ ︸

Inframarginal changes

(10)



Second Derivatives of Multivariate Functions

There are two types of “second partial derivatives”:

1 “Own second”: fxixi ≡ ∂2f
∂x2i

2 “Cross partial”: fxixj ≡ ∂2f
∂xi∂xj

Hessian is a collection of all second derivatives

Own partials form diagonal

Cross partials are off-diagonal
Symmetry: fxixj = fxjxi
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Extrema of Multivariate Functions

As with single-variable functions, a “derivative” of 0 indicates a local
extremum:

∇f (x) = 0

i.e. ∂f
∂xi

= 0 ∀i .
Again, in general need to worry about multiplicity of local extrema,
boundaries, strange points.
But with an concave function, a local maximum will be unique, and it will
be the global maximum.
A multivariate function is concave if its Hessian is “negative definite.”

We’ll now need to discuss some linear algebra.


