Calculus Prerequisites

Econ 6105, Fall 2024

Prof. Josh Abel

(SB Chapters 2-5, 30.2, A.4, 14, 17)

Consider function $f(x)$

 $f: R^1 \rightarrow R^1$, i.e. input x is scalar, output is a scalar Consider two points in f's domain: x_0 and $x_0 + h$ Average rate of change of f from x_0 to $x_0 + h$ is:

$$
\Delta_f(x_0; h) \equiv \frac{f(x_0 + h) - f(x_0)}{x_0 + h - x_0} = \frac{f(x_0 + h) - f(x_0)}{h} \tag{1}
$$

• "Rise over run"

• "Within $[x_0, x_0 + h]$, what is the average increase in $f(x)$ when x increases by 1 unit?"

$$
\Delta_f(x_0; h) = \frac{f(x_0 + h) - f(x_0)}{h}
$$

Seems reasonable to ask, "How quickly is f changing precisely at x_0 ?" Tempting to set $h = 0$, but then we get indeterminate answer:

$$
\Delta_f(x_0;0)=\frac{f(x_0)-f(x_0)}{0}=0/0=??
$$

Instead, we take the limit: $\lim_{h\to 0} \Delta_f(x_0, h)$

• "What is the average increase in $f(x)$ as x moves away from x_0 , but by an arbitrarily small amount?"

This is known as the "derivative", denoted $f'(x)$ or df/dx .

- A function, $f(x)$ has a limit of L as x approaches p if:
	- For every $\epsilon > 0...$
	- there exists a $\delta(\epsilon) > 0$ such that...
	- if $|x p| \in (0, \delta(\epsilon))$...
	- then $|f(x) L| < \epsilon$.

In notation:

 $\forall \epsilon > 0, \exists \delta(\epsilon) > 0$ s.t. $|x - p| \in (0, \delta(\epsilon)) \Rightarrow |f(x) - L| < \epsilon$

The Derivative

$$
f'(x) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
$$
 (2)

Example: $f(x) = x^2$, $x_0 = 3$

$$
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
$$

=
$$
\lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h}
$$

=
$$
\lim_{h \to 0} \frac{x_0^2 + h^2 + 2 \cdot x_0 \cdot h - x_0^2}{h}
$$

=
$$
\lim_{h \to 0} h + 2 \cdot x_0
$$

=
$$
2 \cdot x_0
$$

 $f'(3) = 6.$

Sometimes you get "different limits" when $h \to 0$ in different ways.

• More precisely, this means the limit does not exist Consider $f(x) = |x|$. Suppose we have h approach 0 from above:

$$
f'(0) = \frac{|0+h| - |0|}{h} = \frac{h}{h} = 1?
$$

Now have h approach 0 from below:

$$
f'(0) = \frac{|0+h| - |0|}{h} = \frac{-h}{h} = -1?
$$

The derivative of $f(x) = |x|$ is not defined at $x = 0$ because the rate of change depends on which direction you're going. We typically work with "well-behaved" functions, but you need to be careful when working on problems with sharp/discrete changes.

E.g. Minimizing squared errors vs absolute errors

Some important cases to know cold:

\n- \n
$$
f(x) = x^n \rightarrow f'(x) = n \cdot x^{n-1}
$$
\n
\n- \n
$$
f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x}
$$
\n
\n- \n
$$
f(x) = a^x \rightarrow f'(x) = \ln(a) \cdot a^x
$$
\n
\n- \n
$$
f(x) = e^x \rightarrow f'(x) = e^x
$$
\n
\n

- **1** For a scalar k : $(k \cdot f)'(x) = k \cdot f'(x)$
- **2** For two functions f and g : $(f+g)'(x) = f'(x) + g'(x)$
- **3** Product Rule: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- **4** Quotient Rule: $(f/g)'(x) = \frac{g(x) \cdot f'(x) f(x) \cdot g'(x)}{g'(x)^2}$ $g(x)^2$
	- "Ho-dee-hi minus hi-dee-ho, all over hoho"

The Chain Rule

Consider $f(x) \equiv h(g(x))$. E.g. $g(x) = \ln(x)$, $h(x) = x^2 \to f(x) = \ln(x)^2$

Derivative of $f(x)$ is found with the Chain Rule:

$$
f'(x_0) = g'(x_0) \cdot h'(g(x_0))
$$

df/dx = $\frac{dg}{dx} \cdot \frac{dh}{dg}$ (3)

"x moves g by g', which then moves f by h' per unit: $f' = g' \cdot h'$."

$$
\bullet \ \ f(x) = \ln(x)^2 \to f'(x) = 2 \cdot \ln(x) \cdot \frac{1}{x}
$$

The Chain Rule could just be "rule 5" on the previous slide, but it's a bit harder and quite important.

Can take the derivative of a derivative ("second derivative")...and derivative of second derivative ("third derivative), and so on...

$$
\bullet \ \ f(x)=1/x
$$

$$
\bullet \ \ f'(x)=-1/x^2
$$

2
$$
f''(x) = 2/x^3
$$

$$
f^{[3]}(x) = -6/x^4
$$

 4

Away from $x = 0$, all ∞ derivative functions exist. Therefore, $f(x) = 1/x$ is "continuously differentiable" – or "smooth" – for $x \neq 0$.

A first order Taylor Polynomial around a in the domain of f is:

$$
\tilde{f}(a+h) = f(a) + f'(a) \cdot h \tag{4}
$$

Note that \tilde{f} is a good approximation of f around a in the following sense:

$$
\lim_{h \to 0} \frac{f(a+h) - \tilde{f}(a+h)}{h} = \lim_{h \to 0} \frac{f(a+h) - (f(a) + f'(a) \cdot h)}{h}
$$

$$
= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} - f'(a)
$$

$$
= f'(a) - f'(a)
$$

$$
= 0
$$

In words, no matter how small your desired margin of error, you can find h small enough to meet it.

Common to see second-order Taylor approximation:

$$
\tilde{f}(a+h) \approx f(a) + f'(a) \cdot h + \frac{1}{2} \cdot f''(a) \cdot h^2 \tag{5}
$$

Won't prove this one, but intuition is that both first and second derivatives are correct at a:

$$
\bullet \lim_{h\to 0} \tilde{f}'(a+h) = \lim_{h\to 0} f'(a) + f''(a) \cdot h = f'(a)
$$

$$
\bullet \lim_{h\to 0} \tilde{f}''(a+h) = \lim_{h\to 0} f''(a) = f''(a)
$$

Can do higher-order approximations:

$$
\tilde{f}(a+h) \approx f(a) + f'(a) \cdot h + \frac{1}{2} \cdot f''(a) \cdot h^2 + \frac{1}{2 \cdot 3} \cdot f^{(3)}(a) \cdot h^3 + \dots + \frac{1}{n!} \cdot f^{(n)}(a) \cdot h^n + \dots
$$
\n(6)

Taylor Approximations (picture)

8 $n=0$ $n=1$ 7 $n=2$ $n=3$ 6 $n = 4$ $n=5$ $5.$ $n=6$ $n=7$ \mathcal{Z} $P_n(x),$ 3 $\overline{2}$ 1 . \circ . -1 $-2 -3$ -2.5 -2 -1.5 -1 -0.5 0.5 1.5 0 ı 2

x-engineer.org

First and second derivatives are often discussed.

- f' determines increasing ($>$ 0) vs. decreasing ($<$ 0)
- f'' determines convex $($ $>$ 0) vs. concave $($ $<$ 0)

Cases:

- $f'(x) > 0$: $f(x)$ is increasing... **1** $f''(x) > 0$: ...at an increasing rate 2 $f''(x) < 0$: ...at a decreasing rate $f'(x) < 0$: $f(x)$ is decreasing... **1** $f''(x) > 0$: ...at an increasing rate
	- 2 $f''(x) < 0$: ...at a decreasing rate

Want to find the maximum of a function $f(x)$ on the domain [a, b].

- **1** Can rule out points with $f'(x) \neq 0$. Why?
- **2** Can rule out points $f'(x) = 0$ and $f''(x) > 0$. Why?

What's left?

- **1** Points with $f'(x) = 0$ and $f''(x) < 0$ local maxima
- **2** Points with $f'(x) = 0$ and $f''(x) = 0$ possible local maxima...
- **3** Points where $f'(x)$ or $f''(x)$ are not defined
	- Most notably, the boundaries

General approach

- **1** Calculate $f'(x)$
- $\textbf{2}$ Identify points $\{x_1, x_2, ...\}$ with $f'(x) = 0$ or $f'(x)$ undefined
- Calculate $f(x)$ at all such points choose the largest.

In many economics settings, we work with functions such that $f'(x) > 0$ and $f''(x) < 0$ for all x

• Increasing, concave functions

In this case, there is exactly 1 local maximum, and it is the global maximum.

Find it by setting $f'(x) = 0$ and solving for x.

Define $F(x)$ to be the "antiderivative" of $f(x)$, meaning $F'(x) = f(x)$. Just uses rules of derivatives in reverse

- E.g. If $f(x) = 2 \cdot x$, then $F(x) = x^2 + C$, where C is a scalar constant
	- It works: $F'(x) = 2 \cdot x + 0$
	- C is called the "constant of integration"

The antiderivative is not unique: any value of C would work, so there are ∞ solutions.

Anitderivative (also called the "indefinite integral") of $f(x)$ is helpful for calculating "area under a curve"...

Derivatives measure an instantaneous change

E.g. "How much water is flowing into the tub at this instant?" Integrals measure an accumulated change

• E.g. "How much water flowed into the tub between times a and b?" Let $f(x)$ be the instantaneous flow of water, defined for $x \in [a, b]$. Define W to be amount of water accumulated from $x = a$ to $x = b$. W can be:

- **1** Approximated as a sum
- ² Solved exactly as a "definite integral"

Riemann Sum

To calculate Riemann Sum of area under curve:

- \bullet Partition [a, b] into intervals
	- For simplicity, $N \equiv \frac{b-a}{\Delta}$ equally-sized intervals of width Δ , indexed by i
- $\bullet\,$ Assign height to each section, $\tilde{f}(x)_i$, and create corresponding rectangle
	- In picture, height is $\tilde{f}(x)_i = f(\max\{x\})$, i.e. $f(x)$ at rightmost point in each interval
- Calculate rectangle areas and sum them up

Fundamental Theorem of Calculus:

$$
W = \lim_{\Delta \to 0} \sum_{i=1}^{N} \tilde{f}(x)_i \cdot \Delta \equiv \int_{a}^{b} f(x) \cdot dx \equiv F(b) - F(a). \tag{7}
$$

E.g.
$$
f(x) = 2 \cdot x
$$
, $a = 0$, $b = 4$:

$$
\bullet \ \ F(x) = x^2 + C
$$

•
$$
\int_a^b f(x) \cdot dt = 4^2 + C - (0^2 + C) = 16
$$

Does not matter that we never solved for $C - i t$ canceled out!

- C is like an initial condition at time a
- We do not need to know how much water was in the tub at time a to know how much flowed in between a and b.

We will now consider multivariate functions, $f: R^n \rightarrow R^1$

- E.g. Utility depends on multiple goods $u(x_1, x_2) = x_1^{\alpha} \cdot x_2^{1-\alpha}$
- \bullet E.g. $H(x, t)$ heat depends on time of day (t) as well as actions taken by agent (x) .
	- Profit may depend on price, and quatity which depends on price: $\Pi(x(p), p)$

Multivariate calculus builds very directly off of single-variable calculus

For $f(x) \equiv f(x_1, ..., x_n)$, the "partial derivative of f with respect to x_i " is the impact of a marginal change in x_i , holding all other $x_{j\neq i}$ constant:

$$
\frac{\partial f}{\partial x_i}(x^0) = \lim_{h \to 0} \frac{f(x_1^0, \dots, x_i^0 + h, \dots, x_n^0) - f(x_1^0, \dots, x_i^0, \dots, x_n^0)}{h} \tag{8}
$$

This essentially identical to the derivative from the single-variate case (" ∂ " instead of "d").

The multivariate analog of "the derivative" (called the "Jacobian" or "gradient") of f is just the collection the individual partial derivatives:

$$
\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right].
$$

Partial derivative moves x_i , holds all $\mathsf{x}_{j\neq i}$ constant. In contrast, "total derivative" considers simultaneous marginal changes in all variables. In particular, for small dx_i s:

$$
df(x^{0}) = \frac{\partial f}{\partial x_{1}}(x^{0}) \cdot dx_{1} + \ldots + \frac{\partial f}{\partial x_{n}}(x^{0}) \cdot dx_{n}
$$
(9)

E.g. Change in utility from perturbing bundle (x_1, x_2) is:

$$
dU = \frac{\partial U}{\partial x_1} \cdot dx_1 + \frac{\partial U}{\partial x_2} \cdot dx_2 = MU_1 \cdot dx_1 + MU_2 \cdot dx_2.
$$

Holding utility constant, we get the slope of the indifference curve:

$$
\frac{dx_2}{dx_1}\big|_{dU=0} = -\frac{MU_1}{MU_2}
$$

All of the rules discussed earlier for single-variable derivatives carry over for partial derivatives.

Note that Chain Rule can become more interesting in the multivariate case. Suppose $f(Y) = g(x_1(Y), ..., x_n(Y))$. Then:

$$
\frac{df}{dY}(Y^0) = \frac{\partial g}{\partial x_1}(x(Y^0)) \cdot x_1'(Y^0) + \ldots + \frac{\partial g}{\partial x_n}(x(Y^0)) \cdot x_n'(Y^0)
$$

To get the impact of income (Y) on $f...$

- $\textbf{\textbullet}$ Look at how each x_i is affected $(x_i'(Y^0))$
- ? Multiply by the sensitivity of g to that particular x_i ($\frac{\partial g}{\partial x}$ $\frac{\partial g}{\partial x_i}$)
- **3** Sum up across all *i*

Let
$$
W(x) = \int_{a(x)}^{b(x)} f(x, t) \cdot dt
$$
. Then:
\n
$$
\frac{dW}{dx} = f(x, b(x)) \cdot \frac{db}{dx} - f(x, a(x)) \cdot \frac{da}{dx} + \underbrace{\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x} \cdot dt}_{\text{Isom marginal changes}} \qquad (10)
$$

Second Derivatives of Multivariate Functions

There are two types of "second partial derivatives":

\n- • "Own second":
$$
f_{x_i x_i} \equiv \frac{\partial^2 f}{\partial x_i^2}
$$
\n- • "Cross partial": $f_{x_i x_j} \equiv \frac{\partial^2 f}{\partial x_i \partial x_j}$
\n

Hessian is a collection of all second derivatives

$$
\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}
$$

Source: Wikipedia

- Own partials form diagonal
- Cross partials are off-diagonal

• Symmetry:
$$
f_{x_i x_j} = f_{x_j x_i}
$$

Second Derivatives of Multivariate Functions

There are two types of "second partial derivatives":

\n- • "Own second":
$$
f_{x_i x_i} \equiv \frac{\partial^2 f}{\partial x_i^2}
$$
\n- • "Cross partial": $f_{x_i x_j} \equiv \frac{\partial^2 f}{\partial x_i \partial x_j}$
\n

Hessian is a collection of all second derivatives

- Own partials form diagonal
- Cross partials are off-diagonal

• Symmetry:
$$
f_{x_i x_j} = f_{x_j x_i}
$$

Second Derivatives of Multivariate Functions

There are two types of "second partial derivatives":

\n- • "Own second":
$$
f_{x_i x_i} \equiv \frac{\partial^2 f}{\partial x_i^2}
$$
\n- • "Cross partial": $f_{x_i x_j} \equiv \frac{\partial^2 f}{\partial x_i \partial x_j}$
\n

Hessian is a collection of all second derivatives

Source: Wikipedia

- Own partials form diagonal
- Cross partials are off-diagonal

• Symmetry:
$$
f_{x_i x_j} = f_{x_j x_i}
$$

As with single-variable functions, a "derivative" of 0 indicates a local extremum:

$$
\nabla f(\mathbf{x}) = \mathbf{0}
$$

i.e. $\frac{\partial f}{\partial x_i} = 0 \,\forall i$.

Again, in general need to worry about multiplicity of local extrema, boundaries, strange points.

But with an concave function, a local maximum will be unique, and it will be the global maximum.

A multivariate function is concave if its Hessian is "negative definite."

We'll now need to discuss some linear algebra.