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Introduction

We are building towards optimization.
Conclusion of previous slide deck:

@ “Negative definite” “Hessian matrix” is key for finding a local max

This deck introduces the bare minimum of linear algebra to make sense of
that statement

o Later, we will return to more advanced linear algebra



Scalars, Vectors, and Matrices

A scalar is a real number
o Eg. 44
A vector of length n is a collection of n scalars
2.1
o Eg |1.87
4
@ A scalar is a vector of length 1

A matrix is a rectangular array of scalars, with k rows and n columns

2.1 3.0
o Eg |187 4.4
03 5

@ A vector is a matrix with 1 column



Transpose

Consider a kxn matrix A.
The “transpose” of A, denoted AT is nxk matrix such that the i" row of
A is the itM column of AT .

2 =2

oE.g.A:[_22 g EH;AT: 4 0
' -1 0.1



Addition and Scalar Multiplication

For a scalar ¢ and matrix A, find B = c- A with b;; = c - aj;.
3 2 12 8

eEg. 4-14 1| =16 4
0 6 0 24
For a matrices A and B, find C = A+ B with ¢;; = a;; + bj;.
12 8 3 2 15 10
ekEg |16 4|+ |4 1| =120 5

0 24 0 6 0 30



While addition is straightforward, matrix multiplication is odd
Useful to first consider the “dot product” of two vectors.
For 2 vectors of length n, their dot product is:

Vi w1
n
V2 w2
V-w = : = E Vi w;
Py
Vn Whn
4 0

oEg [3] |1 =4-043-14+-3.2=-3
-3 |2



Matrix Multiplication

For matrices A and B, the product C = AB is only defined if the number

of columns of A equals the number of rows of B.
In that case, ¢;; is found as the dot product of the row i of A with column

j of B.

1 2
1 2 3
o Eg. [4 5 6] g 461



Matrix Multiplication

For matrices A and B, the product C = AB is only defined if the number

of columns of A equals the number of rows of B.
In that case, ¢;; is found as the dot product of the row i of A with column

j of B.

wEl |1 23 ; i J1-142:3+3.5 1.24+2:443-6
€ 14 5 6 s ol 41453465 4-245.446-6

22 28

~ 49 64

Resulting product has A number of rows and B’s number of columns






AB + BA

1 2 1 2 3 1-1+2-4 1-242-5 1-3+2-6

3 4 [4 5 6]: 3-1+4-4 3-2+4-5 3-3+4-6

5 6 5:-1+6-4 5-24+6-5 5-3+6-6
9 12 15
=119 26 33
29 40 51

AB was a 2x2 matrix, but BA is a 3x3 matrix.



Other Rules of Matrix Algebra

While matrices do not obey commutativity of multiplication, they obey
other standard rules:

@ Associativity:
o Addition: (A+B)+ C=A+(B+ ()

o Multiplication: (AB)C = A(BC)
o Commutativity of Addition: A+ B=B+ A



Determinant of “small” Square Matrices

A square matrix has the same number of rows as columns (nxn).
A square matrix's “determinant” has many different uses, which we will
use later. For “small” matrices, the formulas are fairly simple:

e A= [311], det(A) = a1l

a a
o A— 11 12

, det(A) = a11 - ax — a12 - an
a1 ax

d11 412 413
@ A= [ax1 ax» axs|, det(A) =
d31 432 433

a» a a a a1 a
apg - det (22 8) _ o der (P 9B 4o det (2L 922
asz ass a1 ass a3y as2



General Formula for a Determinant

Consider a nxn matrix A.

o Define Ajj to be a (n— 1)x(n — 1) matrix created by removing row i
and column j from A.

o Define Mj; = det(Aj).
det(A) = a1 - Myp — a1p - Mip + ... + (=1)"* 1 - ay, - My,



Negative Definite Matrices

We say a scalar ¢ is “negative” if ¢ < 0.
It is less straightforward what a “negative” matrix should be.
A close analog for square matrices is that a nxn matrix A is “negative

definite” if Vx # 0 € R™
x" Ax < 0. (1)
Note that this is sensible in the intuitive case of n = 1 (scalars).

e It amounts to saying A is negative if x?-a < 0 for all x. Since x> > 0,
this is what we would expect.

@ The definition above extends to matrices with n > 1

@ Unlike scalars, though, a matrix might not be negative (definite) or
positive (definite)...it could be “indefinite.”



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A = [Z ﬂ

X1

For a generic x € R?, [
X2

], we have:

xT Ax =



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A = [Z ﬂ

X1

For a generic x € R?, [
X2

], we have:

xT Ax = [a-x1+b-x2 b-x1+c-x2] [Xl] =
X2



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A = [Z [j

. X
For a generic x € R?, [Xl], we have:
2

xT Ax = [a “x1+b-x2 b-x3+c- xz] [il] = a-xf—i—b-xz-xl—i—b-xl-x2+c-x22
2

:a-x12+2-b-xz-x1+c-x22



Negative Definiteness of Symmetric 2x2 Matrices (2)

xTAx:a-x12—1—2-b-x2-x1—i—c-x22

b? b?
:a'X12+2'b-X2-x1+c-x22+—'X227—-X22
a a
2-b b? b?
:a-(xf+—~x2-x1+7-x§>+c'x2——-x22
a a a

b 2 a.c—bp ,
:a-(Xl—i-*'XQ) + X
a a



Negative Definiteness of Symmetric 2x2 Matrices (2)

xTAx:a~x12+2~b-x2-x1+c-x22

b? b?
:a-x12+2-b-xz-x1+c-x22+f-X22——~x22
a a
2-b b? b?
2 2 2 2
=a-(x{+— x-x1+ — X C- Xy —— X
(1+ a 2 l—i_a2 2>+ 2 5 7
b 2 g.c—b? 5
:a-<x1+f-XQ> +— X
a a ~—~
_l’_

+

Will be negative for all x;, xo if and only if:
Q a<o
Q@ac-—b>0



Negative Definiteness of Symmetric 2x2 Matrices (2)

x"Ax=a-x2+2-b-xp-x1 +C-x2
> 5, b,

:a-X12+2-b-xz-x1+c'x22+ X3 =%

<
2-b b? b?
:a-(xlz—i-T-xz-xl—l—?-xf)—i—c-xz—;-xzz

b 2 a.c—b? 5
:a-(Xl—i-;-Xg) +— X

a ~—~

Y +

Will be negative for all x;, xo if and only if:
Q a<0ie a;1<0
Q@ a-c—b>>0 ie det(A) >0



Negative Definiteness of General Symmetric Matrices

a1l A a1n
. . . aip a a
Consider symmetric nxn matrix A = | “¥2 922 2n
din d2n --- Aann
Define the “first principal submatrix” as A1 = [a11].

a2 ax

Similarly define the k" principal submatrix of A by deleting the last n — k
rows and columns of A.

SB Theorem 16.1: A symmetric matrix A as defined above is
negative definite if and only if

Q det(A1) <0
Q det(A2) >0
© det(A3) <0
Q ..det(Ax) oc (1)K

. u . ajg a
Define the “second principal submatrix” as A, = [ 1 12}



Positive Definite Symmetric Matrices

A nxn matrix A is “positive definite” if Yx # 0 € R":

x" Ax > 0. (2)
SB Theorem 16.1: A symmetric matrix A as defined on the previous
slide is positive definite if and only if:
o det(Ax) > 0Vk < n.



THE BIG IDEA

End of last slide deck:

Extrema of Multivariate Functions

As with single-variable functions, a “derivative” of 0 indicates a local
extremum:

Vi(x)=0

ey L =0y

Again, in general need to worry about multiplicity of local extrema,
boundaries, strange points.

But with an concave function, a local maximum will be unique, and it will
be the global maximum.

A multivariate function is concave if its Hessian is “negative definite.”

@ We'll now need to discuss some linear algebra.




THE BIG IDEA

Consider x such that:
@ Vf(x) =0 (i.e. derivative is 0)
@ H(x) is negative definite

€1
If we perturb x by e = |...|, second-order Taylor approximation yields:
€n
1
f(x+e€)—f(x)= VFf(x)-e + 5 e H(x)e
N—— <

0: critical point <0: neg. def. Hessian

So we have justified that if we are at a critical point with a negative
definite Hessian, we are at a local max: no matter which directions you
move, f falls!

By the same logic as before, if the Hessian is negative definite for all
points in the domain, the local max is a global max.



A Little More Intuition for the 2x2 Case

f11 f12]
H =
|:f12 f22

H being negative definite implies 3 things:

Q@ f1 <0
e Intuitive based on single-variable intuition

Q <0
e Intuitive based on single-variable intuition

Q fi1-fo >
o The negatives from the own-seconds outweigh any positives that could

come from the cross-partials



