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Introduction

We are building towards optimization.
Conclusion of previous slide deck:

“Negative definite” “Hessian matrix” is key for finding a local max

This deck introduces the bare minimum of linear algebra to make sense of
that statement

Later, we will return to more advanced linear algebra



Scalars, Vectors, and Matrices

A scalar is a real number

E.g. 4.4

A vector of length n is a collection of n scalars

E.g

 2.1
1.87
4


A scalar is a vector of length 1

A matrix is a rectangular array of scalars, with k rows and n columns

E.g

 2.1 3.0
1.87 4.4
−0.3 5


A vector is a matrix with 1 column



Transpose

Consider a kxn matrix A.
The “transpose” of A, denoted AT is nxk matrix such that the i th row of
A is the i th column of AT .

E.g. A =

[
2 4 −1
−2 0 0.1

]
; AT =

 2 −2
4 0
−1 0.1





Addition and Scalar Multiplication

For a scalar c and matrix A, find B = c · A with bij = c · aij .

E.g. 4 ·

3 2
4 1
0 6

 =

12 8
16 4
0 24


For a matrices A and B, find C = A+ B with cij = aij + bij .

E.g.

12 8
16 4
0 24

+

3 2
4 1
0 6

 =

15 10
20 5
0 30





Dot product

While addition is straightforward, matrix multiplication is odd
Useful to first consider the “dot product” of two vectors.
For 2 vectors of length n, their dot product is:

v · w =


v1
v2
...
vn

 ·


w1

w2

...
wn

 =
n∑

i=1

vi · wi

E.g.

 4
3
−3

 ·

01
2

 = 4 · 0 + 3 · 1 +−3 · 2 = −3



Matrix Multiplication

For matrices A and B, the product C = AB is only defined if the number
of columns of A equals the number of rows of B.
In that case, cij is found as the dot product of the row i of A with column
j of B.

E.g.

[
1 2 3
4 5 6

]1 2
3 4
5 6





Matrix Multiplication

For matrices A and B, the product C = AB is only defined if the number
of columns of A equals the number of rows of B.
In that case, cij is found as the dot product of the row i of A with column
j of B.

E.g.

[
1 2 3
4 5 6

]1 2
3 4
5 6

 =

[
1 · 1 + 2 · 3 + 3 · 5 1 · 2 + 2 · 4 + 3 · 6
4 · 1 + 5 · 3 + 6 · 5 4 · 2 + 5 · 4 + 6 · 6

]

=

[
22 28
49 64

]
Resulting product has A number of rows and B’s number of columns



AB ̸= BA

1 2
3 4
5 6

[
1 2 3
4 5 6

]



AB ̸= BA

1 2
3 4
5 6

[
1 2 3
4 5 6

]
=

1 · 1 + 2 · 4 1 · 2 + 2 · 5 1 · 3 + 2 · 6
3 · 1 + 4 · 4 3 · 2 + 4 · 5 3 · 3 + 4 · 6
5 · 1 + 6 · 4 5 · 2 + 6 · 5 5 · 3 + 6 · 6


=

 9 12 15
19 26 33
29 40 51


AB was a 2x2 matrix, but BA is a 3x3 matrix.



Other Rules of Matrix Algebra

While matrices do not obey commutativity of multiplication, they obey
other standard rules:

Associativity:

Addition: (A+ B) + C = A+ (B + C )

Multiplication: (AB)C = A(BC )

Commutativity of Addition: A+ B = B + A



Determinant of “small” Square Matrices

A square matrix has the same number of rows as columns (nxn).
A square matrix’s “determinant” has many different uses, which we will
use later. For “small” matrices, the formulas are fairly simple:

A = [a11], det(A) = a11

A =

[
a11 a12
a21 a22

]
, det(A) = a11 · a22 − a12 · a21

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, det(A) =
a11 · det

(
a22 a23
a32 a33

)
− a12 · det

(
a21 a23
a31 a33

)
+ a13 · det

(
a21 a22
a31 a32

)



General Formula for a Determinant

Consider a nxn matrix A.

Define Aij to be a (n − 1)x(n − 1) matrix created by removing row i
and column j from A.

Define Mij = det(Aij).

det(A) = a11 ·M11 − a12 ·M12 + ...+ (−1)n+1 · a1n ·M1n



Negative Definite Matrices

We say a scalar c is “negative” if c < 0.
It is less straightforward what a “negative” matrix should be.
A close analog for square matrices is that a nxn matrix A is “negative
definite” if ∀x ̸= 0 ∈ Rn:

xTAx < 0. (1)

Note that this is sensible in the intuitive case of n = 1 (scalars).

It amounts to saying A is negative if x2 · a < 0 for all x . Since x2 > 0,
this is what we would expect.

The definition above extends to matrices with n > 1

Unlike scalars, though, a matrix might not be negative (definite) or
positive (definite)...it could be “indefinite.”



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A =

[
a b
b c

]
.

For a generic x ∈ R2,

[
x1
x2

]
, we have:

xTAx =



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A =

[
a b
b c

]
.

For a generic x ∈ R2,

[
x1
x2

]
, we have:

xTAx =
[
a · x1 + b · x2 b · x1 + c · x2

] [x1
x2

]
=



Negative Definiteness of Symmetric 2x2 Matrices

Consider a symmetric 2x2 matrix: A =

[
a b
b c

]
.

For a generic x ∈ R2,

[
x1
x2

]
, we have:

xTAx =
[
a · x1 + b · x2 b · x1 + c · x2

] [x1
x2

]
= a·x21+b·x2·x1+b·x1·x2+c·x22

= a · x21 + 2 · b · x2 · x1 + c · x22



Negative Definiteness of Symmetric 2x2 Matrices (2)

xTAx = a · x21 + 2 · b · x2 · x1 + c · x22

= a · x21 + 2 · b · x2 · x1 + c · x22 +
b2

a
· x22 − b2

a
· x22

= a ·
(
x21 +

2 · b
a

· x2 · x1 +
b2

a2
· x22

)
+ c · x22 − b2

a
· x22

= a ·
(
x1 +

b

a
· x2

)2
+

a · c − b2

a
· x22



Negative Definiteness of Symmetric 2x2 Matrices (2)

xTAx = a · x21 + 2 · b · x2 · x1 + c · x22

= a · x21 + 2 · b · x2 · x1 + c · x22 +
b2

a
· x22 − b2

a
· x22

= a ·
(
x21 +

2 · b
a

· x2 · x1 +
b2

a2
· x22

)
+ c · x22 − b2

a
· x22

= a ·
(
x1 +

b

a
· x2

)2

︸ ︷︷ ︸
+

+
a · c − b2

a
· x22︸︷︷︸

+

Will be negative for all x1, x2 if and only if:

1 a < 0

2 a · c − b2 > 0



Negative Definiteness of Symmetric 2x2 Matrices (2)

xTAx = a · x21 + 2 · b · x2 · x1 + c · x22

= a · x21 + 2 · b · x2 · x1 + c · x22 +
b2

a
· x22 − b2

a
· x22

= a ·
(
x21 +

2 · b
a

· x2 · x1 +
b2

a2
· x22

)
+ c · x22 − b2

a
· x22

= a ·
(
x1 +

b

a
· x2

)2

︸ ︷︷ ︸
+

+
a · c − b2

a
· x22︸︷︷︸

+

Will be negative for all x1, x2 if and only if:

1 a < 0, i.e. a11 < 0

2 a · c − b2 > 0, i.e. det(A) > 0



Negative Definiteness of General Symmetric Matrices

Consider symmetric nxn matrix A =


a11 a12 ... a1n
a12 a22 ... a2n
...
a1n a2n ... ann

.
Define the “first principal submatrix” as A1 ≡ [a11].

Define the “second principal submatrix” as A2 ≡
[
a11 a12
a12 a22

]
.

Similarly define the kth principal submatrix of A by deleting the last n − k
rows and columns of A.
SB Theorem 16.1: A symmetric matrix A as defined above is
negative definite if and only if

1 det(A1) < 0

2 det(A2) > 0

3 det(A3) < 0

4 ...det(Ak) ∝ (−1)k



Positive Definite Symmetric Matrices

A nxn matrix A is “positive definite” if ∀x ̸= 0 ∈ Rn:

xTAx > 0. (2)

SB Theorem 16.1: A symmetric matrix A as defined on the previous
slide is positive definite if and only if:

det(Ak) > 0 ∀k < n.



THE BIG IDEA

End of last slide deck:



THE BIG IDEA

Consider x such that:

1 ∇f (x) = 0 (i.e. derivative is 0)

2 H(x) is negative definite

If we perturb x by ϵ =

ϵ1...
ϵn

, second-order Taylor approximation yields:

f (x+ ϵ)− f (x) ≈ ∇f (x) · ϵ︸ ︷︷ ︸
0: critical point

+
1

2
· ϵTH(x)ϵ︸ ︷︷ ︸

<0: neg. def. Hessian

So we have justified that if we are at a critical point with a negative
definite Hessian, we are at a local max: no matter which directions you
move, f falls!
By the same logic as before, if the Hessian is negative definite for all
points in the domain, the local max is a global max.



A Little More Intuition for the 2x2 Case

H =

[
f11 f12
f12 f22

]
H being negative definite implies 3 things:

1 f11 < 0

Intuitive based on single-variable intuition

2 f22 < 0

Intuitive based on single-variable intuition

3 f11 · f22 > f 212
The negatives from the own-seconds outweigh any positives that could
come from the cross-partials


